SuperServer® 1029UX-LL1-S16 1029UX-LL2-S16 1029UX-LL3-S16 **USER'S MANUAL** Revision 1.0a The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our website at www.supermicro.com. Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license. IN NO EVENT WILL Super Micro Computer, Inc. BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPER MICRO COMPUTER, INC. SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA. Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Supermicro's total liability for all claims will not exceed the price paid for the hardware product. FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense. <u>California Best Management Practices Regulations for Perchlorate Materials</u>: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate". <u>WARNING</u>: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm. The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems, aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale. Manual Revision 1.0a Release Date: April 05, 2018 Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document. Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders. Copyright © 2018 by Super Micro Computer, Inc. All rights reserved. Printed in the United States of America ## **Preface** ### **About this Manual** This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the SuperServer 1029UX-LL1-S16/LL2-S16/LL3-S16. Installation and maintenance should be performed by experienced technicians only. Please refer to the 1029UX-LL1-S16/LL2-S16/LL3-S16 server specifications page on our website for updates on supported memory, processors and operating systems (http://www.supermicro.com). ### **Notes** For your system to work properly, please follow the links below to download all necessary drivers/utilities and the user's manual for your server. - Supermicro product manuals: http://www.supermicro.com/support/manuals/ - Product drivers and utilities: ftp://ftp.supermicro.com - Product safety info: http://www.supermicro.com/about/policies/safety_information.cfm If you have any questions, please contact our support team at: support@supermicro.com This manual may be periodically updated without notice. Please check the Supermicro website for possible updates to the manual revision level. ## Warnings Special attention should be given to the following symbols used in this manual. **Warning!** Indicates important information given to prevent equipment/property damage or personal injury. Warning! Indicates high voltage may be encountered when performing a procedure. # **Contents** # **Chapter 1 Introduction** | 1.1 | Overview | 8 | |-----|--|----| | 1.2 | Unpacking the System | 8 | | 1.3 | System Features | 9 | | 1.4 | Server Chassis Features | 10 | | | Control Panel | 10 | | | Front Features | 11 | | | Rear Features | 12 | | 1.5 | Motherboard Layout | 13 | | | Quick Reference Table | 14 | | Cha | apter 2 Server Installation | | | 2.1 | Overview | 17 | | 2.2 | Preparing for Setup | 17 | | | Choosing a Setup Location | 17 | | | Rack Precautions | 17 | | | Server Precautions | 18 | | | Rack Mounting Considerations | 18 | | | Ambient Operating Temperature | 18 | | | Airflow | 18 | | | Mechanical Loading | 18 | | | Circuit Overloading | 19 | | | Reliable Ground | 19 | | 2.3 | Installing the Server into a Rack | 20 | | | Identifying the Sections of the Rack Rails | 20 | | | Installing the Optional Inner Rail Extensions | 21 | | | Assembling the Outer Rails | 22 | | | Installing the Outer Rails onto the Rack | 23 | | | Installing the Chassis into the Rack | 24 | | | Installing the Server into a Telco Rack | 25 | | Cha | apter 3 Maintenance and Component Installation | | | 3.1 | Removing Power | 26 | | 3.2 | Accessing the System | 26 | | 3.3 | Motherboard Components | 27 | | | Processor and Heatsink Installation | 27 | |-----|---|----| | | The Xeon Scalable Processor | 28 | | | Assembling the Processor Package | 28 | | | Removing the Dust Cover from the CPU Socket | 31 | | | Installing the Processor Heatsink Module (PHM) | 32 | | | Removing the Processor Heatsink Module from the Motherboard | 33 | | | Memory Installation | 34 | | | Memory Support | 34 | | | Memory Population Guidelines | 35 | | | Memory Population Sequence | 35 | | | DIMM Installation | 37 | | | DIMM Removal | 37 | | | PCI Expansion Card Installation | 38 | | | Motherboard Battery | 39 | | 3.4 | Chassis Components | 40 | | | Hard Drives | 40 | | | System Cooling | 42 | | | Installing Fans | 42 | | | Installing the Air Shroud | 43 | | | Power Supply | 44 | | | Power Supply Failure | 44 | | Ch | apter 4 Motherboard Connections | | | 4.1 | Power Connections | 45 | | 4.2 | Headers and Connectors | 46 | | | Control Panel | 49 | | 4.3 | Ports | 51 | | | Rear I/O Ports | 51 | | | Ethernet Port | 53 | | 4.4 | Jumpers | 54 | | | Explanation of Jumpers | 54 | | 4.5 | LED Indicators | 57 | | Ch | apter 5 Software | | | 5.1 | OS Installation | 58 | | | Installing the Windows OS for a RAID System | 58 | | | Installing Windows to a Non-RAID System | 58 | |-----|---|-----| | 5.2 | Driver Installation | 59 | | 5.3 | SuperDoctor® 5 | 60 | | 5.4 | IPMI | 61 | | Ch | apter 6 BIOS | | | 4.1 | Introduction | 62 | | | Starting the Setup Utility | 62 | | 6.2 | Main Setup | 63 | | 6.3 | Advanced Setup Configurations | 65 | | 6.4 | Event Logs | 103 | | 6.5 | IPMI | 105 | | 6.6 | Security Settings | 108 | | 6.7 | Boot Settings | 111 | | 6.8 | Save & Exit | 113 | | Ap | pendix A BIOS Error Codes | | | Ap | pendix B Standardized Warning Statements for AC Systems | 3 | | Ap | pendix C System Specifications | | | Ap | pendix D UEFI BIOS Recovery | | ## **Contacting Supermicro** ### Headquarters Address: Super Micro Computer, Inc. 980 Rock Ave. San Jose, CA 95131 U.S.A. Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008 Email: marketing@supermicro.com (General Information) support@supermicro.com (Technical Support) Website: www.supermicro.com **Europe** Address: Super Micro Computer B.V. Het Sterrenbeeld 28, 5215 ML 's-Hertogenbosch, The Netherlands Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525 Email: sales@supermicro.nl (General Information) support@supermicro.nl (Technical Support) rma@supermicro.nl (Customer Support) Website: www.supermicro.nl **Asia-Pacific** Address: Super Micro Computer, Inc. 3F, No. 150, Jian 1st Rd. Zhonghe Dist., New Taipei City 235 Taiwan (R.O.C) Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3992 Email: support@supermicro.com.tw Website: www.supermicro.com.tw # **Chapter 1** ## Introduction ### 1.1 Overview This chapter provides a brief outline of the functions and features of the SuperServer. The 1029UX-LL1-S16/LL2-S16/LL3-S16 is based on the X11DPU-XLL motherboard and
the SC119UTS-R751P chassis. In addition to the motherboard and chassis, several important parts that are included with the system are listed below. | Main Parts List | | | | | |---|----------------------|----------|--|--| | Description | Part Number | Quantity | | | | Air Shroud | MCP-310-81912-0N | 2 | | | | Heatsink | SNK-P0067PSW | 2 | | | | Fans | FAN-0101L4 | 8 | | | | Riser Card | RSC-R1UW-2E16 | 1 | | | | Riser Card | RSC-R1UW-E8R | 1 | | | | Add-on Card for LSI-3108 SAS3 | AOC-S3108L-H81R-16DD | 1 | | | | Add-on Card for 4 GBe LAN ports and 1 PCI-E x8 3.0 slot | AOC-UR-I4G | 1 | | | | Hard Drive Carriers (for 2.5" hot-swap drives) | MCP-220-00047-0B | 10 | | | | Hard Drive Backplane | BPN-SAS3-116A-N2 | 1 | | | | Rack Rails: Outer Rails | MCP-290-00102-0N | 1 set | | | | Rack Rails: Inner Rail Extensions | MCP-290-00112-0N | 1 set | | | | Rack Rails: Quick Release Inner Rails | MCP-290-00120-0N | 1 set | | | ## 1.2 Unpacking the System Inspect the box the SuperServer 1029UX-LL1-S16/LL2-S16/LL3-S16 was shipped in and note if it was damaged in any way. If any equipment appears damaged, please file a damage claim with the carrier who delivered it. Decide on a suitable location for the rack unit that will hold the server. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. It will also require a grounded AC power outlet nearby. Be sure to read the precautions and considerations noted in Appendix B. ## 1.3 System Features The following table provides you with an overview of the main features of the 1029UX-LL1-S16/LL2-S16/LL3-S16. Please refer to Appendix C for additional specifications. #### **System Features** #### **Motherboard** X11DPU-XLL #### Chassis SC119UTS-R751P #### **CPU** Dual Intel® Xeon® Scalable processors (Intel Xeon Gold 6144, 6146 and 6154 for -LL1, -LL2, and -LL3, respectively) #### **Socket Type** Socket P #### Memory Sixteen DIMM slots to support up to 2TB of ECC, DDR4-2666/2400 Registered DIMM (RDIMM) memory Note: Twelve 16GB DIMMs have been pre-installed in the system. #### Chipset Intel C621 chipset #### **Expansion Slots (supported)** Two PCI-E 3.0 x16 slots (with included riser card) One PCI-E 3.0 x8 (with included riser card) #### **Hard Drives** Ten 2.5" hot-swap hard drives #### **Power** Dual 750W (redundant) power supply modules (p/n PWS-751P-1R) #### Form Factor 1U rackmount #### **Dimensions** (WxHxD) 17.2 x 1.7 x 27.8 in. (437 x 43 x 706 mm) ## 1.4 Server Chassis Features ## **Control Panel** The switches and LEDs located on the control panel are described below. See Chapter 4 for details on the control panel connections. Figure 1-1. Control Panel View | | Control Panel Features | | | | | |--------------------------|------------------------|--|--|--|--| | Item Feature Description | | | | | | | 1 | Information LED | See table below for details. | | | | | 2 | NIC2 LED | Indicates network activity on LAN port 2 when flashing | | | | | 3 | NIC1 LED | Indicates network activity on LAN port 1 when flashing | | | | | 4 | HDD LED | Indicates activity on the hard drive when flashing. | | | | | 5 | Power LED | Indicates power is being supplied to the system's power supply unit. This LED should normally be illuminated when the system is operating. | | | | | 6 | UID LED | Depressing the UID (unit identifier) button illuminates an LED on the front and rear of the chassis for easy system location in large stack configurations. The LED will remain on until the button is pushed a second time. Another UID button on the rear of the chassis serves the same function. | | | | | 7 | Power Button | The main power button is used to apply or remove power from the power supply to the server. Turning off system power with this button removes the main power but maintains standby power. To perform many maintenance tasks, you must also unplug system before servicing. | | | | | 8 | USB Ports | USB 3.0 Ports | | | | | Information LED | | | | | |-------------------------|---|--|--|--| | Status | Description | | | | | Continuously on and red | An overheat condition has occurred. (This may be caused by cable congestion.) | | | | | Blinking red (1Hz) | Fan failure, check for an inoperative fan. | | | | | Solid blue | UID has been activated locally to locate the server in a rack environment. | | | | | Blinking blue | UID has been activated using IPMI to locate the server in a rack environment. | | | | ### **Front Features** The SC119UTS-R751P is a 2U chassis See the illustration below for the features included on the front of the chassis. Figure 1-2. Chassis Front View | Front Chassis Features | | | | | | |--|-------------------|--|--|--|--| | Item Feature Desc | | Description | | | | | 1 | HDD | Hot-swap 2.5" SAS/SATA hard disk drive* | | | | | 2 | HDD | Hot-swap 2.5" NVMe hard disk drive | | | | | 3 Control Panel Front control panel with LEDs and buttons (see preceding page) | | Front control panel with LEDs and buttons (see preceding page) | | | | | 4 | Rack Ear Brackets | Attaches server chassis to the rack | | | | **Note:** these drives are supported by the SAS controller, even when SATA drives are being used. ## **Rear Features** The illustration below shows the features included on the rear of the chassis. Figure 1-3. Chassis Rear View | Rear Chassis Features | | | | | | |--------------------------|---------------------|--|--|--|--| | Item Feature Description | | Description | | | | | 1 | Power Supply | 750W redundant power supply (p/n PWS-751P-1R) | | | | | 2 | I/O Back Panel | Rear I/O ports (see Section 4.3) | | | | | 3 | Expansion Card Slot | Slot for expansion card (requires pre-installed riser cards) | | | | | 4 | Rack Ear Brackets | Attaches server chassis to the rack | | | | ## 1.5 Motherboard Layout Below is a layout of the X11DPU-XLL with jumper, connector and LED locations shown. See the table on the following page for descriptions. For detailed descriptions, pinout information and jumper settings, refer to Chapter 4. Figure 1-4. Motherboard Layout ### Notes: - "\(\) indicates the location of pin 1. - Jumpers and LED indicators not indicated are used for internal testing only. ## **Quick Reference Table** | Jumper | Description | Default Setting | | | |--|--|-----------------------------|--|--| | JBR1 | BIOS Recovery | Pins 1-2 (Normal) | | | | JBT1 | CMOS Clear | Open (Normal) | | | | JPG1 | VGA Enable/Disable Pins 1-2 (Enabled) | | | | | JPME1 | Recovery Mode | Pins 1-2 (Normal) | | | | JPME2 | Manufacturing Mode | Pins 1-2 (Normal) | | | | JVRM1 | VRM Programming | Pins 1-2 (Default) | | | | JWD1 | Watch Dog | Pins 1-2 (Reset) | | | | LED | Description | Status | | | | LE2 | Standby PWR LED | Green: SB Power On | | | | LED1 | UID LED | Solid Blue: Unit Identified | | | | LEDM1 | BMC Heartbeat LED | Blinking Green: BMC Normal | | | | 0 | December | | | | | Connector | Description | | | | | BIOS | BIOS | | | | | BT1 | Onboard Battery | | | | | COM1 COM Port FAN14 - FAN19 System (CDLI For Headers (FAN14 CDLI For) | | | | | | FAN1 ~ FAN8 | System/CPU Fan Headers (FAN1: CPU Fan) | | | | | IPMI_LAN JLAN1 | Dedicated IPMI LAN Port | | | | | I-SATA0 ~ I-SATA7 | Intel® PCH SATA 3.0 Ports | | | | | JF1 | Front Control Panel Header | | | | | JGPW1 - JGPW4 | (GPU PWR1 - GPU PWR4) GPU and VGA Device Power Connectors | | | | | JHFI1, JHFI2 | HFI connector headers for CPU1 and CPU2 respectively (see Notes below) | | | | | JHSSI1 - JHSSI2 | Connector for FPGA GPIO signal | | | | | JIPMB1 | System Management Bus Header for IPMI2.0 | | | | | JL1 | Chassis Intrusion Header | | | | | JNVI ² C1, JNVI ² C2 | VPP_CPU1, VPP-CPU2 - System Management Bus | | | | | JP2 | CPLD programming | | | | | JPW1 - JPW4 | (BP PWR1 - BP PWR4) Backplane power connectors for har | rd drives | | | | JRK1 | Intel Raid Key Header | | | | **Notes:** For the HFI sideband carrier card to function properly, install the HFI card to an appropriate PCI-E slot of your choice, and install an F model processor in CPU Socket#1. Connect an HFI cable from the HFI card to JHFI header and connect an IFP cable from HFI card to the processor. (See Chapter 3 for more details.) | Connector | Description | | |--|--|--| | JSDCARD1 | SD Card Socket | | | JSD1 - JSD2 | SATA DOM Power Connectors | | | JTPM1 TPM/PORT80 Trusted Platform Module/Port 80 Connector | | | | JUIDB2 | Unit Identifier (UID) Switch | | | JUSB3 USB3/4(3.0) | USB 3.0 header (Ports 3 and 4) | | | JUSBA1 USB2(3.0) | Type A USB 3.0 header (Port 2) | | | NVME10, NVME11 | P1_NVMe1, P1_NVMe2; On-Board NVMe 1 and 2 for high speed PCI-E storage devices on CPU1 | | | NVME12, NVME13 | P2_NVMe1, P2_NVMe2; On-Board NVMe 1 and 2 for high speed PCI-E storage devices on CPU2 | | | PSU1 | Power Supply Unit 1 | | | PSU2 | Power Supply Unit 2 | | | SATA 4,5 | SATA Ports (Supports SuperDOM) | | | SP1 | Internal Speaker/Buzzer | | | S-SATA0-3 | Intel® PCH SATA 3.0 Ports | | | SXB1 | WIO Left Riser Slot | | | SXB2 | WIO Right Riser Slot | | | SXB3 | Ultra Riser Slot | | | T-SGPIO3 | Serial General Purpose
Input/Output Header | | | USB0/1 (3.0) | Back panel Universal Serial Bus (USB) 3.0 Port | | | VGA | VGA Port | | Figure 1-5. Intel C621 Chipset: System Block Diagram **Note:** This is a general block diagram and may not exactly represent the features on your motherboard. See the System Specifications appendix for the actual specifications of your motherboard. # **Chapter 2** ## Server Installation ## 2.1 Overview This chapter provides advice and instructions for mounting your system in a server rack. If your system is not already fully integrated with processors, system memory etc., refer to Chapter 4 for details on installing those specific components. **Caution:** Electrostatic Discharge (ESD) can damage electronic components. To prevent such damage to PCBs (printed circuit boards), it is important to use a grounded wrist strap, handle all PCBs by their edges and keep them in anti-static bags when not in use. ## 2.2 Preparing for Setup The box in which the system was shipped should include the rackmount hardware needed to install it into the rack. Please read this section in its entirety before you begin the installation. ## **Choosing a Setup Location** - The system should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. - Leave enough clearance in front of the rack so that you can open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow sufficient space for airflow and access when servicing. - This product should be installed only in a Restricted Access Location (dedicated equipment rooms, service closets, etc.). - This product is not suitable for use with visual display workplace devices according to §2 of the the German Ordinance for Work with Visual Display Units. ### **Rack Precautions** • Ensure that the leveling jacks on the bottom of the rack are extended to the floor so that the full weight of the rack rests on them. - In single rack installations, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together. - Always make sure the rack is stable before extending a server or other component from the rack. - You should extend only one server or component at a time extending two or more simultaneously may cause the rack to become unstable. #### Server Precautions - Review the electrical and general safety precautions in Appendix B. - Determine the placement of each component in the rack *before* you install the rails. - Install the heaviest server components at the bottom of the rack first and then work your way up. - Use a regulating uninterruptible power supply (UPS) to protect the server from power surges and voltage spikes and to keep your system operating in case of a power failure. - Allow any drives and power supply modules to cool before touching them. - When not servicing, always keep the front door of the rack and all covers/panels on the servers closed to maintain proper cooling. ## Rack Mounting Considerations ### **Ambient Operating Temperature** If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the room's ambient temperature. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (TMRA). #### **Airflow** Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised. ### Mechanical Loading Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading. ### Circuit Overloading Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern. #### Reliable Ground A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.). To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety: - This unit should be mounted at the bottom of the rack if it is the only unit in the rack. - When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack. - If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack. Slide rail mounted equipment is not to be used as a shelf or a work space. **Warning:** do not pick up the server with the front handles. They are designed to pull the system from a rack only. ## 2.3 Installing the Server into a Rack This section provides information on installing the chassis into a rack unit with the rails provided. There are a variety of rack units on the market, which may mean that the assembly procedure differs slightly. You should also refer to the installation instructions that came with the rack unit you are using. Note: This rail will fit a rack between 26" and 33.5" deep. ## Identifying the Sections of the Rack Rails The chassis package includes two sets of rack rails, one set for the right side of the chassis and one for the left. Each set consists of an inner rail that is fixed directly to the chassis and an outer rail that attaches to the rack. The inner rails are pre-attached and do not interfere with normal use of the chassis if you decide not to install it into a rack. Figure 2-1. Identifying the Sections of the Rack Rails ### **Installing the Optional Inner Rail Extensions** Attaching the optional inner rail extensions allows you to pull the server farther out of the rack. Do not put downward force on the chassis when it is fully extended. ### Installing the Inner Rail Extensions - 1. Place the inner rail extensions at the side of the chassis. Align the holes of the inner rail extension with the hooks on the side of the chassis. Make sure the extension faces outward like the inner rail. - 2. Slide the extension toward the front of the chassis and under the hooks until the quick release bracket snaps into place, securing the extension to the chassis. - 3. If desired, you can install a screw to further secure the extension to the chassis. - 4. Repeat for the other inner rail extension. Figure 2-2. Installing the Inner Rail Extensions **Warning:** Stability hazard. The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before you slide the unit out for servicing. Failure to stabilize the rack can cause the rack to tip over. ## **Assembling the Outer Rails** Each outer rail comes in two sections that must be assembled before mounting onto the rack. *Assembling the Outer Rails* - 1. Identify the left and right outer rails by examining the ends, which bend outward. Match the left front outer rail with the left rear outer rail and the same for the right rails. - 2. Align the round post in the rear rail (B) with the round hole at the end of the slot in the front rail (A), and slide the front section into the rear section. Figure 2-3. Assembling the Outer Rails ### Installing the Outer Rails onto the Rack Each end of the assembled outer rail includes a bracket with square pegs to fit into your rack holes. If you have an older rack with round holes, these brackets must be removed, and you must use screws to secure the rail to the rack. #### Outer Rail Installation - 1. Align the square pegs on the front end of the rail with the square holes on the front of the rack (C). Push the rail into the rack until the quick release bracket snaps into place, securing the rail to the rack. Keep the rail horizontal. - 2. Adjust the rail to reach just past the full depth of your rack. - 3. Align the square pegs on the rear end of the rail to the holes on the rack (D) and push the rail into the rack until the quick release bracket snaps into place, securing the rail to the rack. - 4. Repeat the procedure for the other outer rail assembly. Figure 2-4. Installing the Outer Rails to the Rack **Note:** Figure is for illustrative purposes only. Always install servers to the bottom of a rack first. ## Installing the Chassis into the Rack ### Installing the Chassis into the Rack - 1. Slide the inner rail extensions into the front of the outer rails. - 2. Push the chassis backward into the rack until it clicks into the locked position. ### Removing the Chassis from the Rack - 1. To remove the chassis from the rack, press the outer rail latch to release the chassis. - 2. Carefully slide the chassis forward, off the outer rails and out of the chassis. Figure 2-5. Installing/Removing the Chassis into/from the Rack **Note:** Figure is for illustrative purposes only. Always install servers to the bottom of a rack first. ### Installing the Server into a Telco Rack Two optional L-shaped brackets are needed to install the server to a telco (open type) rack. *Installing the Server into a Telco Rack* - 1. Determine how far follow the server will extend out the front of the rack. Larger chassis should be positioned to balance the weight between front and back. - 2. If a bezel is included on your server, remove it. - 3. Attach the two front brackets to each side of the chassis, then the two rear brackets positioned with just enough space to accommodate the width of the telco rack. - 4. Finish by sliding the chassis into the rack and tightening the brackets to the rack. Figure 2-6. Installing the Chassis into a Telco Rack **Note:** Figure is for
illustrative purposes only. Always install servers to the bottom of a rack first. # **Chapter 3** # **Maintenance and Component Installation** This chapter provides instructions on installing and replacing main system components. To prevent compatibility issues, only use components that match the specifications and/or part numbers given. Installation or replacement of most components require that power first be removed from the system. Please follow the procedures given in each section. ## 3.1 Removing Power Use the following procedure to ensure that power has been removed from the system. This step is necessary when removing or installing non hot-swap components or when replacing a non-redundant power supply. - 1. Use the operating system to power down the system. - 2. After the system has completely shut-down, disconnect the AC power cord(s) from the power strip or outlet. (If your system has more than one power supply, remove the AC power cords from all power supply modules) - 3. Disconnect the power cord(s) from the power supply module(s). ## 3.2 Accessing the System The SC119UTS-R751P features a removable top cover, which allows easy access to the inside of the chassis. #### Removing the Top Cover - 1. Disconnect the chassis from any power source if necessary (see above). - 2. Press the two release buttons to remove the cover from the locked position. (Press both tabs at the same time.) - 3. Once the top cover is released from the locked position, slide the cover toward the rear of the chassis. - 4. Lift the cover off the chassis. - 5. To remove the system from the rack completely, press the locking tabs in the chassis rails (push the right-side tab down and the left-side tab up) to continue to pull the system out past the locked position. Figure 3-1. Removing the Top Cover # 3.3 Motherboard Components #### **Processor and Heatsink Installation** The Intel® Xeon® Scalable processor series comes in two models: Fabric (F model) and Non-Fabric (Non-F model). Only the Non-Fabric model is supported for this system. The processor (CPU) and heatsink should be assembled together first to form the processor heatsink module (PHM), and then install the PHM into the CPU socket. **Caution:** Use ESD protection. Do not touch the underside of the CPU. Improper installation or socket misalignment can cause serious damage to the CPU or socket which may require manufacturer repairs. #### Notes: - All power should be off, as described in Section 3.1, before installing the processors. - When handling the processor package, avoid placing direct pressure on the label area of the CPU or socket. - Check that the plastic socket dust cover is in place and none of the socket pins are bent otherwise, contact your retailer. - Refer to the Supermicro website for updates on CPU support. - Graphics in this manual are for illustration. Your components may look slightly different. ### The Xeon Scalable Processor Figure 3-2. Xeon Scalable Processors ### Assembling the Processor Package Attach the processor to the thin processor clip to create the processor package. - 1. On the top corner of the CPU, locate pin 1 (A), marked by a triangle. Also, locate notch B and notch C (and notch D for F models) on the CPU as shown below. - 2. On the top of the processor clip, locate the corner marked by a hollow triangle as the position for pin 1. Also locate notch B and notch C (and D for F models) on the processor clip. - 3. Align pin 1 of the CPU with its proper position on the processor clip and carefully insert the CPU into the processor clip. Slide notch B of the CPU into tab B of the processor clip, and slide notch C of the CPU into tab C of the processor clip (and D for F models) until the processor clip tabs snap onto the CPU. - 4. Examine all corners to ensure that the CPU is properly seated and secure on the processor clip. The processor package assembly is created. Figure 3-3. Processor Package Assembly for the non-F Model Processors Figure 3-4. Processor Package Assembly for the F Model Processors After creating the processor package assembly, mount it onto the heatsink to create the processor heatsink module (PHM). - 1. On the heatsink label, locate "1" and the corner next to it. Turn the heatsink upside down with the thermal grease side facing up, keeping track of the "1" corner. - 2. Remove the protective thermal film if present. If this is a new heatsink, the necessary thermal grease has been pre-applied in the factory. If the heatsink is not new, apply the proper amount of the thermal grease. - 3. In the plastic processor clip, locate the hollow triangle at the corner ("a" in the drawing below) next to a hole and plastic mounting clips. There is a similar hole and mounting clips at the diagonal corner of the of the processor clip ("b" in the drawing). - 4. With the underside of heatsink and the underside of the processor package facing up, align the "1" corner on the heatsink ("A" in the drawing) against the mounting clips next to the hollow triangle ("a") on the processor package. - 5. Also align the corner ("B") at the diagonal side of the heatsink with the corresponding clips on the processor package ("b"). - 6. Once aligned, press the processor package assembly onto the heatsink until the mounting clips (at a, b, c, and d) snap into place. The processor heatsink module is assembled. Figure 3-5. Assembling the Processor Heatsink Module ## Removing the Dust Cover from the CPU Socket Remove the dust cover from the CPU socket, exposing the socket pins as shown below. Caution: Do not touch the socket pins. Figure 3-6. Removing the Socket Dust Cover ### Installing the Processor Heatsink Module (PHM) - 1. Locate the triangle (pin 1) on the CPU socket. Also locate the pin 1 corner of the PHM that is closest to "1" on the heatsink label. To confirm, look at the underside of the PHM and note the hollow triangle in the processor clip and printed triangle on the CPU located next to a screw at the corner. - 2. Align the pin 1 corner of the PHM over the pin 1 corner on the CPU socket. - 3. Align the two holes at diagonal corners of the PHM onto the two guide posts on the socket bracket and carefully lower the PHM onto the socket. - 4. Use a T30 Torx-bit screwdriver to install four screws into the mounting holes on the socket to securely attach the PHM onto the motherboard in the sequence of 1, 2, 3, and 4, as marked on the heatsink label. Gradually tighten each to assure even pressure. **Note**: Use only 12 foot-pounds of torque when tightening the screws to avoid damaging the processor or the socket. Figure 3-7. Installing the Processor Heatsink Module ### Removing the Processor Heatsink Module from the Motherboard Before removing the processor heatsink module (PHM), power down as described in Section 3.1. - 1. Using a T30 Torx-bit screwdriver, loosen and remove the screws on the PHM from the socket, starting with the screw marked #4, in the sequence of 4, 3, 2, 1. - 2. Pull up the PHM while releasing the small snap tabs on two corners of the socket. Figure 3-8. Removing the Processor Heatsink Module ## **Memory Installation** ## **Memory Support** The motherboard features 16 DIMM slots that can support up to 2TB of ECC, DDR4-2666/2400 Registered DIMM (RDIMM) memory. The black DIMM slots are reserved for future NVDIMM support. | DDR4 Memory Support for Two Slots per Channel | | | | | | |---|------------------------------|-------------------------|-----------------------|-----------------------|-----------| | | Ranks | Ranks | | Speed (MT/s) | | | | Per DIMM Capacity (GB) Or Ch | DIMM Capacity | | Two Slots per Channel | | | Туре | | One DIMM per
Channel | Two DIMMs per Channel | | | | | Width | 4 Gb | 8 Gb | 1.2 Volts | 1.2 Volts | | | SRx4 | 8 GB | 16 GB | 2666 | 2666 | | RDIMM | SRx8 | 4 GB | 8 GB | 2666 | 2666 | | KDIIVIIVI | DRx8 | 8 GB | 16 GB | 2666 | 2666 | | | DRx4 | 16 GB | 32 GB | 2666 | 2666 | | RDIMM 3Ds | QRX4 | N/A | 2H-64GB | 2666 | 2666 | | RDIIVIIVI 3DS | 8RX4 | N/A | 4H-128GB | 2666 | 2666 | | LRDIMM | QRx4 | 32 GB | 64 GB | 2666 | 2666 | | LRDIMM | QRX4 | N/A | 2H-64GB | 2666 | 2666 | | 3Ds | 8Rx4 | N/A | 4H-128 GB | 2666 | 2666 | | DDR4 Memory Support for One Slot per Channel | | | | | | |--|-------------|-----------------------|-----------|----------------------|--| | | Ranks | DIMM Capacity
(GB) | | Speed (MT/s) | | | Туре | Per
DIMM | | | One Slot per Channel | | | туре | and
Data | | | One DIMM per Channel | | | | Width | 4 Gb | 8 Gb | 1.2 Volts | | | | SRx4 | 8 GB | 16 GB | 2666 | | | RDIMM | SRx8 | 4 GB | 8 GB | 2666 | | | KDIIVIIVI | DRx8 | 8 GB | 16 GB | 2666 | | | | DRx4 | 16 GB | 32 GB | 2666 | | | RDIMM 3Ds | QRX4 | N/A | 2H-64GB | 2666 | | | RDIIVIIVI 3DS | 8RX4 | N/A | 4H-128GB | 2666 | | | LRDIMM | QRx4 | 32 GB | 64 GB | 2666 | | | LRDIMM | QRX4 | N/A | 2H-64GB | 2666 | | | 3Ds | 8Rx4 | N/A | 4H-128 GB | 2666 | | Check the Supermicro website for possible updates to memory support. ### **Memory Population Guidelines** - All DIMMs must be DDR4. - Balance memory. Using unbalanced memory topology, such as populating two DIMMs in one channel while populating one DIMM in another channel, reduces performance. It is not recommended for Supermicro systems. - In dual-CPU configurations, memory must be installed in the slots associated with the installed CPUs. Guidelines Regarding Mixing DIMMs - Populating slots with a pair of DIMM modules of the same type and size results in interleaved memory, which improves memory performance. - Use memory modules of the same type and speed, as mixing is not allowed. - x4 and x8 DIMMs can be mixed in the same channel. - Mixing of LRDIMMs and RDIMMs is not allowed in the same channel, across different channels, and across different sockets. - Mixing of non-3DS and 3DS LRDIMM is not allowed in the same channel, across different channels, and across different sockets. **DIMM
Construction** - RDIMM (non-3DS) Raw Cards: A/B (2Rx4), C (1Rx4), D (1Rx8), E (2Rx8) - 3DS RDIMM Raw Cards: A/B (4Rx4) - LRDIMM (non-3DS) Raw Cards: D/E (4Rx4) - 3DS LRDIMM Raw Cards: A/B (8Rx4) #### Memory Population Sequence Blue slots versus black slots: Install the first DIMM in the blue memory slot, which is the first of a memory channel. Then, if using two DIMMs per channel, install the second DIMM in the black slot. The following memory population sequence table was created based on guidelines provided by Intel to support Supermicro motherboards. The diagram is for illustrative purposes; your motherboard may look different. | Memory Population for X11 DP Motherboard, 16 DIMM Slots | | |---|--| | When 1 CPU is used: | Memory Population Sequence | | 1 CPU & 1 DIMM | CPU1: P1-DIMMA1 | | 1 CPU & 2 DIMMs | CPU1: P1-DIMMA1/P1-DIMMD1 | | 1 CPU & 3 DIMMs | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1 | | 1 CPU & 4 DIMMs | CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1 | | 1 CPU & 5 DIMMs
(Unbalanced: not
recommended) | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1 | | 1 CPU & 6 DIMM | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1 | | 1 CPU & 7 DIMMs
(Unbalanced: not
recommended) | CPU1:P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMA2/P1-DIMMD1/P1-DIMME1/
P1-DIMMF1 | | 1 CPU & 8 DIMMs
(Unbalanced: not
recommended) | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/
P1-DIMME1/P1-DIMMF1 | | When 2 CPUs are used: | Memory Population Sequence | | 2 CPUs & 2 DIMMs | CPU1: P1-DIMMA1
CPU2: P2-DIMMA1 | | 2 CPUs & 4 DIMMs | CPU1: P1-DIMMA1/P1-DIMMD1
CPU2: P2-DIMMA1/P2-DIMMD1 | | 2 CPUs & 6 DIMMs | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1
CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1 | | 2 CPUs & 8 DIMMs | CPU1: P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1
CPU2: P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1 | | 2 CPUs & 10 DIMMs | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1 CPU2: P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1 | | 2 CPUs & 12 DIMMs | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMD1/P1-DIMME1/P1-DIMMF1 CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1/P2-DIMMD1/P2-DIMME1/P2-DIMMF1 | | 2 CPUs & 14 DIMMs
(Unbalanced: not
recommended) | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMA2/P1-DIMMD1/P1-DIMME1/
P1-DIMMF1
CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1/P2-DIMMA2/P2-DIMMD1/P2-DIMME1/
P2-DIMMF1 | | 2 CPUs & 16 DIMMs
(Unbalanced: not
recommended) | CPU1: P1-DIMMC1/P1-DIMMB1/P1-DIMMA1/P1-DIMMA2/P1-DIMMD2/P1-DIMMD1/
P1-DIMME1/P1-DIMMF1
CPU2: P2-DIMMC1/P2-DIMMB1/P2-DIMMA1/P2-DIMMA2/P2-DIMMD2/P2-DIMMD1/
P2-DIMME1/P2-DIMMF1 | ## **DIMM** Installation - 1. Insert DIMMs in the following order: P1-DIMMA1, P1-DIMMD1, P1-DIMMB1, P1-DIMME1, P1-DIMMC1 P1-DIMMF1. For the system to work properly, please use memory modules of the same type and speed on the motherboard. - 2. Push the release tabs outwards on both ends of the DIMM slot to unlock it. - 3. Align the key of the DIMM with the receptive point on the memory slot. - 4. Align the notches on both ends of the module against the receptive points on the ends of the slot. - 5. Use two thumbs together to press both ends of the module straight down into the slot until the module snaps into place. - 6. Press the release tabs to the lock positions to secure the DIMM into the slot. ## **DIMM Removal** Reverse the steps above to remove the DIMMs from the motherboard. Figure 3-9. Installing DIMMs ## **PCI Expansion Card Installation** The system includes two pre-installed riser cards (p/n RSC-R1UW-E8R and RSC-R2-66). Riser cards on chassis brackets allow you to add PCI expansion cards. - RSC-R1UW-E8R supports one standard size PCI-E x8 expansion card. - RSC-R1UW-2E16 supports two standard size PCI-E x16 expansion cards. ### Installing PCI Expansion Cards Perform the following steps to install an add-on card: - 1. Remove power from the system as described in section 3.1. - 2. Remove the chassis cover as described in section 3.2. - 3. Remove the bracket and sections of the chassis in the rear. - 4. Insert the expansion card into a slot on the riser card while aligning the expansion card backplate with the open slot in the rear of the chassis. - 5. Insert the riser card into the serverboard expansion slot while aligning the riser card bracket with the rear of the chassis. The riser card bracket is toolless and has pins that snap into holes on the rear of the chassis. Figure 3-10. Riser Card Bracket and Expansion Slots ## **Motherboard Battery** The motherboard uses non-volatile memory to retain system information when system power is removed. This memory is powered by a lithium battery residing on the motherboard. ### Replacing the Battery Begin by removing power from the system as described in section 3.1. - 1. Push aside the small clamp that covers the edge of the battery. When the battery is released, lift it out of the holder. - 2. To insert a new battery, slide one edge under the lip of the holder with the positive (+) side facing up. Then push the other side down until the clamp snaps over it. **Note:** Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly. Figure 3-11. Installing the Onboard Battery **Warning:** There is a danger of explosion if the onboard battery is installed upside down (which reverses its polarities). This battery must be replaced only with the same or an equivalent type recommended by the manufacturer (CR2032). # 3.4 Chassis Components ## **Hard Drives** The 1029UX-LL1-S16/LL2-S16/LL3-S16 supports 10 hot-swappable 2.5" hard drives. The hard drives are mounted in drive carriers to simplify their installation and removal from the chassis. System power may remain on when removing carriers with drives installed. These carriers also help promote proper airflow for the drive bays. For this reason, even empty carriers without drives installed must remain in the chassis.. ### Removing a Hot-Swap Drive Carrier - 1. Push the release button on the carrier. This extends the drive carrier handle. - 2. Swing the handle fully out. - 3. Grasp the handle and use it to pull the drive carrier out of its bay. Figure 3-12. Removing a Drive Carrier ### Mounting a Drive in a Drive Carrier - 1. Remove the dummy drive, which comes pre-installed in the drive carrier, by removing the screws securing the dummy drive to the carrier. These screws are not used to mount the actual hard drive. - 2. Insert a drive into the carrier with the PCB side facing down and the connector end toward the rear of the carrier. Place the drive in the carrier so that the screw holes line up. - 3. Secure the drive to the carrier with four M3 screws as illustrated below. These screws are included in the chassis accessory box. - 4. Insert the drive carrier with the disk drive into its bay, keeping the carrier oriented so that the hard drive is on the top of the carrier and the release button is on the right side. When the carrier reaches the rear of the bay, the release handle will retract. - 5. Push the handle in until it clicks into its locked position Figure 3-13. Removing a Dummy Drive from the Carrier **Note:** Enterprise level hard disk drives are recommended for use in Supermicro chassis and servers. For information on recommended HDDs, visit the Supermicro website at http://www.supermicro.com/products/nfo/files/storage/SBB-HDDCompList.pdf ## **System Cooling** Eight 4-cm counter-rotating fans provide the cooling for the system. Each fan unit is actually made up of two fans joined back-to-back, which rotate in opposite directions. This counter-rotating action generates exceptional airflow and works to dampen vibration levels. ## Installing Fans Fan speed is controlled by system temperature via IPMI. If a fan fails, the remaining fans will ramp up to full speed. Replace any failed fan at your earliest convenience with the same type and model (the system can continue to run with a failed fan). ## Replacing a System Fan - 1. If necessary, open the chassis while the power is running to determine which fan requires changing. (Never run the server for an extended period of time with the chassis open.) - 2. Power down the system as described in Section 3.1. - 3. Next, remove the top chassis cover as described in Section 3.2. - 4. Unplug the fan cable from the serverboard and remove the failed fan from the chassis. - 5. Replace the failed fan with an identical 4cm fan, available from Supermicro. - 6. Push the new fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating air direction) point in the same direction as the arrows on the other fans. - 7. Reposition the fan housing back over the two mounting posts in the system, then reconnect the fan wires to the same fan headers on the serverboard. - 8. Power up the system and check that the fan is working properly and that the LED on the control panel has turned off. Finish by replacing the chassis cover. Figure 3-14. System Fans ## Installing the Air Shroud Air shrouds concentrate airflow to maximize fan efficiency. The serverboard air shroud does not require screws to install. ## Installing the Air Shroud - 1. Position the air shroud in the chassis as illustrated below. - 2. Align the notch on the air shroud with the pin on the expansion card bracket. - 3. Slide the pin into the back of the notch. - 4. Lower the front of the air shroud over the fan tray, sliding the front notches over the pins on the fan tray. Figure 3-15. Installing
the Air Shroud ## **Power Supply** The 1029UX-LL1-S16 has a redundant 750W power supply, consisting of two power supply modules. These power supplied are auto-switching capable, which enables it to automatically sense and operate with a 100V to 240V input voltage. ## Power Supply Failure If either of the two power supply modules fail, the other module will take the full load and allow the system to continue operation without interruption. The Power Fail LED will illuminate and remain on until the failed unit has been replaced. Replacement units can be ordered directly from Supermicro. ### Replacing the Power Supply Begin by removing power from the failed power supply. - Releasing the retention screws that secure the chassis to the rack, then grasp the two handles on either side and pull the system straight out until it locks (you will hear a "click"). - 2. Unplug the AC power cord from the failed power supply module. - 3. Push in the locking tab at the back of the module to release it. - 4. Pull the unit straight out of the chassis. - 5. Insert the new unit into the chassis, pushing until it clicks. - 6. Plug the AC power cord back into the module. # **Chapter 4** # **Motherboard Connections** This section describes the connections on the motherboard and provides pinout definitions. Note that depending on how the system is configured, not all connections are required. The LEDs on the motherboard are also described here. A motherboard layout indicating component locations may be found in Chapter 1. Please review the Safety Precautions in Appendix B before installing or removing components. ## 4.1 Power Connections There are several different power connectors on the X11DPU-XLL as described below. - SMCI-proprietary Power Connectors (PSU1/PSU2) - 8-pin HDD Backplane Power Connectors (JPW1-JPW4) ### **PSU1 and PSU2 Power Connectors** Two SMCI-proprietary power supply units (PSU1/PSU2) are located on the motherboard to provide main power supply to your system. Power is connected to PSU1 and PSU2 automatically when the power supply modules are installed. ### **HDD Power Connectors** Four 8-pin HDD backplane power connectors (JPW1 - JPW4) are used to provide power to hard drives and other backplane devices. See the table below for pin definitions. | 12V 8-pin Backplane Power
Connector Pin Definitions | | |--|------------| | Pin# | Definition | | 1 through 4 | Ground | | 5/6 | +12V | | 7/8 | +5V | ### **GPU Power Connectors** Four power connectors for GPU and VGA devices are located at JGPW1, JGPW2, JGPW3 and JGPW4. Connect an appropriate cable to each GPU power connector to provide power for your GPU/VGA devices. | 8-pin GPU Power
Pin Definitions | | |------------------------------------|------------| | Pin# | Definition | | 1 through 4 | Ground | | 5 through 8 | +12V | # 4.2 Headers and Connectors ### **Fan Headers** There are eight fan headers on the motherboard. These are 4-pin fan headers; pins 1-3 are backward compatible with traditional 3-pin fans. The onboard fan speeds are controlled by Thermal Management (via Hardware Monitoring) in the BIOS. When using Thermal Management setting, please use all 3-pin fans or all 4-pin fans. | Fan Header
Pin Definitions | | |-------------------------------|----------------| | Pin# Definition | | | 1 | Ground (Black) | | 2 | +12V (Red) | | 3 | Tachometer | | 4 | PWM Control | ### **TPM Header** The JTPM1 header is used to connect a Trusted Platform Module (TPM)/Port 80, which is available from a third-party vendor. A TPM/Port 80 connector is a security device that supports encryption and authentication in hard drives. It allows the motherboard to deny access if the TPM associated with the hard drive is not installed in the system. See the table below for pin definitions. | Trusted Platform Module/Port 80 Header
Pin Definitions | | | | |---|-------------|----|----------| | Pin# Definition Pin# Definition | | | | | 1 | +3.3V | 2 | SPI_CS# | | 3 | RESET# | 4 | SPI_MISO | | 5 | SPI_CLK | 6 | GND | | 7 | SPI_MOSI | 8 | | | 9 | +3.3V Stdby | 10 | SPI_IRQ# | ### **SATA DOM Power Connectors** Two power connectors for SATA DOM (Disk On Module) devices are located at JSD1 and JSD2. Connect appropriate cables to JSD1 and JSD2 to provide power for your SATA DOM devices. | SATA DOM Power
Pin Definitions | | |-----------------------------------|--------| | Pin# Definition | | | 1 | +5V | | 2 | Ground | | 3 | Ground | ## **RAID Key Header** A RAID Key header is located at JRK1 on the motherboard. The RAID key is used to support onboard S-SATA connections. #### **NVMe Slots** Use the four NVMe slots (NVME10, NVME11, NVME12 and NVME13) to attach high-speed PCI-E storage devices. (NVME10 and NVME11 controlled by CPU1, NVME12 and NVME13 controlled by CPU2.) ### **SGPIO Header** The T-SGPIO3 (Serial General Purpose Input/Output) header is used to communicate with the enclosure management chip on the backplane. | SGPIO Header
Pin Definitions | | | | |---------------------------------|--------|---|----------| | Pin# Definition Pin# Definition | | | | | 1 | NC | 2 | NC | | 3 | Ground | 4 | Data out | | 5 | Load | 6 | Ground | | 7 | Clock | 8 | NC | NC = No Connection ### **Chassis Intrusion** A Chassis Intrusion header is located at JL1 on the motherboard. Attach the appropriate cable from the chassis to inform you of a chassis intrusion when the chassis is opened. Refer to the table below for pin definitions. | Chassis Intrusion Pin Definitions | | |-----------------------------------|-----------------| | Pins | Definition | | 1 | Intrusion Input | | 2 | Ground | ## 4-pin BMC External I²C Header A System Management Bus header for IPMI 2.0 is located at JIPMB1. Connect the appropriate cable here to use the IPMB I2C connection on your system. Refer to the table below for pin definitions. | External I ² C Header
Pin Definitions | | |---|---------------| | Pin# | Definition | | 1 | Data | | 2 | Ground | | 3 | Clock | | 4 | No Connection | ### **NVMe I²C SMBus Headers** NVMe SMBus (I²C) headers (JNVI²C1 and JNVI²C2), used for PCI-E SMBus clock and data connections, provide hot-plug support via a dedicated SMBus interface. This feature is only available for a Supermicro complete system with an SMCI-proprietary NVMe add-on card and cable installed. See the table below for pin definitions. | NVMe SMBus Header
Pin Definitions | | | |--------------------------------------|--------|--| | Pin# Definition | | | | 1 | Data | | | 2 | Ground | | | 3 | Clock | | | 4 | VCCIO | | ### I-SATA 3.0 and S-SATA 3.0 Ports The X11DPU-XLL has eight I-SATA 3.0 ports (I-SATA0-3, I-SATA4-7) and six S-SATA ports (S-SATA0-3, S-SATA4, S-SATA5). These SATA ports are supported by the Intel C621 chipset. I-SATA0-3 are supported by the CPU2 PCI-E 3.0 x16 slot on SXB2 and S-SATA0-5 are supported by the CPU1 PCI-E 3.0 x8 slot on SXB1. S-SATA4/S-SATA5 can be used with Supermicro SuperDOMs, which are yellow SATA DOM connectors with power pins built in that do not require external power cables. Supermicro SuperDOMs are backward-compatible with regular SATA HDDs or SATA DOMs that need external power cables. ### **Control Panel** JF1 contains header pins for various control panel connections. See the figure below for the pin locations and definitions of the control panel buttons and LED indicators. All JF1 wires have been bundled into a single cable to simplify this connection. Make sure the red wire plugs into pin 1 as marked on the motherboard. The other end connects to the control panel PCB board. Figure 4-1. JF1: Control Panel Pins ### **Power Button** The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - see Chapter 4). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer. Refer to the table below for pin definitions. | Power Button
Pin Definitions (JF1) | | |---------------------------------------|------------| | Pins | Definition | | 1 | Signal | | 2 | Ground | ## **Reset Button** The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case to reset the system. Refer to the table below for pin definitions. | Reset Button
Pin Definitions (JF1) | | |---------------------------------------|------------| | Pins | Definition | | 3 | Reset | | 4 | Ground | ### **Power Fail LED** The Power Fail LED connection is located on pins 15 and 16 of JF1. Refer to the table below for pin definitions. | Power LED Pin Definitions (JF1) | | | |---------------------------------|-------------------|--| | Pins | Definition | | | 5 | +3.3V | | | 6 | Power Fail Signal | | ### Fan Fail and UID LED Connect an LED cable to pins 7 and 8 of the front control panel to use the Overheat/Fan Fail LED connections. The LED on pin 8 provides warnings of overheat or fan failure. Refer to the tables below for pin definitions. | OH/Fan Fail Indicator
Status | | |---------------------------------|------------| | State | Definition | | Off | Normal | | On | Overheat | | Flashing Fan Fail | | ## NIC1/NIC2 (LAN1/LAN2) The NIC (Network Interface Controller) LED connection for LAN port 1 is located on pins 11 and 12 of JF1, and the LED connection for LAN port 2 is on pins 9 and 10. Attach NIC LED cables to NIC1 and NIC2 LED indicators to display network activities. Refer to the table below for pin definitions. | LAN1/LAN2 LED
Pin Definitions (JF1) | | | |--|------------------|--| | Pins | Definition | | | 9/11 | +3.3V Stby | | | 10/12 | NIC Activity LED | | ### **HDD LED** The HDD LED connection is located on pins 13 and 14 of JF1. Attach a cable to pin 14 to show hard drive
activity status. Refer to the table below for pin definitions. | HDD LED
Pin Definitions (JF1) | | |----------------------------------|------------| | Pins | Definition | | 13 | 3.3V Stdby | | 14 | HDD Active | ## **Power LED** The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table below for pin definitions. | Power LED
Pin Definitions (JF1) | | |------------------------------------|------------| | Pins | Definition | | 15 | +3.3V | | 16 | PWR LED | ## **NMI Button** The non-maskable interrupt (NMI) button header is located on pins 19 and 20 of JF1. Refer to the table below for pin definitions. | NMI Button
Pin Definitions (JF1) | | |-------------------------------------|------------| | Pins | Definition | | 19 | Control | | 20 | Ground | # 4.3 Ports ## Rear I/O Ports See the figure below for the locations and descriptions of the various I/O ports on the rear of the motherboard. Figure 4-2. Rear I/O Ports | Rear I/O Ports | | | | |---------------------------------|-------------------------|---|------------------------| | No. Description No. Description | | | Description | | 1 | USB0 (USB 3.0) | 4 | COM Port | | 2 | USB1 (USB 3.0) | 5 | Unit Identifier Switch | | 3 | Dedicated IPMI LAN Port | 6 | VGA Port | ### **VGA Port** The onboard VGA port is located next to IPMI LAN port on the I/O back panel. Use this connection for VGA display. ## **Serial Port** The COM port (COM1) provides serial communication support. | Trusted Platform Module/Port 80 Header Pin Definitions | | | | |--|------------|------|------------| | Pin# | Definition | Pin# | Definition | | 1 | DCD | 6 | DSR | | 2 | RXD | 7 | RTS | | 3 | TXD | 8 | CTS | | 4 | DTR | 9 | RI | | 5 | Ground | 10 | N/A | ## Universal Serial Bus (USB) Ports There are two USB 3.0 ports (USB0/1) on the I/O back panel. There is also one USB 3.0 header (USB3/4) as well as a Type A USB 3.0 header (USB2) on the motherboard. The onboard headers can be used to provide front side USB access with a cable (not included). | Back Panel USB 0/1 (3.0) Pin Definitions | | | | |--|------------|------|------------| | Pin# | Definition | Pin# | Definition | | A1 | VBUS | B1 | Power | | A2 | D- | B2 | USB_N | | A3 | D+ | В3 | USB_P | | A4 | GND | B4 | GND | | A5 | Stda_SSRX- | B5 | USB3_RN | | A6 | Stda_SSRX+ | B6 | USB3_RP | | A7 | GND | B7 | GND | | A8 | Stda_SSTX- | B8 | USB3_TN | | A9 | Stda_SSTX+ | B9 | USB3_TP | | Front Panel USB 3/4 (3.0) Pin Definitions | | | | |---|------------|------|------------| | Pin# | Definition | Pin# | Definition | | 1 | VBUS | 19 | Power | | 2 | Stda_SSRX- | 18 | USB3_RN | | 3 | Stda_SSRX+ | 17 | USB3_RP | | 4 | GND | 16 | GND | | 5 | Stda_SSTX- | 15 | USB3_TN | | 6 | Stda_SSTX+ | 14 | USB3_TP | | 7 | GND | 13 | GND | | 8 | D- | 12 | USB_N | | 9 | D+ | 11 | USB_P | | 10 | | х | | | Type A USB 2 (3.0) Pin Definitions | | | | | |------------------------------------|--------|---|-------|--| | Pin# Definition Pin# Definition | | | | | | 1 | VBUS | 5 | SSRX- | | | 2 | USB_N | 6 | SSRX+ | | | 3 | USB_P | 7 | GND | | | 4 | Ground | 8 | SSTX- | | | | | 9 | SSTX+ | | ### **Ethernet Port** A dedicated IPMI GbE LAN port is located next to USB 0/1 ports on the back panel. This Ethernet port accepts RJ45 type cables. Please refer to the LED Indicator Section for LAN LED information.. ### Unit Identifier Switch/UID LED Indicator A Unit Identifier (UID) switch (JUIDB2) and a UID LED Indicator (LED1) are located on the I/O back panel. When you press the UID switch, the UID LED indicator will be turned on. Press the UID switch again to turn off the LED. The UID Indicator provides easy identification of a system unit that may be in need of service. **Note:** UID can also be triggered via IPMI on the motherboard. For more information on IPMI, please refer to the IPMI User's Guide posted on our website at http://www.supermicro.com. | UID Switch
Pin Definitions | | | |-------------------------------|-----------------|--| | Pin# | Pin# Definition | | | 1 | Ground | | | 2 | Ground | | | 3 | Button In | | | 4 | Button In | | # 4.4 Jumpers ## Explanation of Jumpers To modify the operation of the motherboard, jumpers are used to choose between optional settings. Jumpers create shorts between two pins to change the function associated with it. Pin 1 is identified with a square solder pad on the printed circuit board. See the motherboard layout page for jumper locations. **Note:** On a two-pin jumper, "Closed" means the jumper is on both pins and "Open" indicates the jumper is either on only one pin or has been completely removed. ### **CMOS Clear** JBT1 is used to clear CMOS, which will also clear any passwords. Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS. ### To Clear CMOS - 1. First power down the system and unplug the power cord(s). - 2. Remove the cover of the chassis to access the motherboard. - 3. Remove the onboard battery from the motherboard. - 4. Short the CMOS pads with a metal object such as a small screwdriver for at least four seconds. - 5. Remove the screwdriver (or shorting device). - 6. Replace the cover, reconnect the power cord(s) and power on the system. Notes: Clearing CMOS will also clear all passwords. Do not use the PW_ON connector to clear CMOS. ### VGA Enable/Disable JPG1 allows you to enable or disable the VGA port using the onboard graphics controller. The default setting is Enabled. | VGA Enable/Disable
Jumper Settings | | | |---------------------------------------|------------|--| | Jumper Setting | Definition | | | Pins 1-2 | Enabled | | | Pins 2-3 Disabled | | | ### **Manufacturing Mode** Close JPME2 to bypass SPI flash security and force the system to use the Manufacturing Mode, which will allow you to flash the system firmware from a host server to modify system settings. See the table below for jumper settings. | Manufacturing Mode Select
Jumper Settings | | |--|--------------------| | Jumper Setting | Definition | | Pins 1-2 | Normal (Default) | | Pins 2-3 | Manufacturing Mode | ## Management Engine (ME) Recovery Use jumper JPME1 to select ME Firmware Recovery mode, which will limit resource allocation for essential system operation only in order to maintain normal power operation and management. In the single operation mode, online upgrade will be available via Recovery mode. See the table below for jumper settings. | Manufacturer Mode
Jumper Settings | | |--------------------------------------|-------------| | Jumper Setting | Definition | | Pins 1-2 | Normal | | Pins 2-3 | ME Recovery | ### I²C Bus for VRM Jumper JVRM1 allows the BMC or the PCH to access CPU and memory VRM controllers. See the table below for jumper settings. | VRM
Jumper Settings | | | |------------------------|--------------|--| | Jumper Setting | Definition | | | Pins 1-2 | BMC (Normal) | | | Pins 2-3 | PCH | | ## Watch Dog JWD controls the Watch Dog function. Watch Dog is a monitor that can reboot the system when a software application hangs. Jumping pins 1-2 will cause Watch Dog to reset the system if an application hangs. Jumping pins 2-3 will generate a non-maskable interrupt signal for the application that hangs. Watch Dog must also be enabled in BIOS. The default setting is Reset. **Note:** When Watch Dog is enabled, the user needs to write their own application software to disable it. | Watch Dog
Jumper Settings | | | |------------------------------|------------|--| | Jumper Setting | Definition | | | Pins 1-2 | Reset | | | Pins 2-3 | NMI | | | Open | Disabled | | ## 4.5 LED Indicators ### **BMC Heartbeat LED** LEDM1 is the BMC heartbeat LED. When the LED is blinking green, BMC is functioning normally. See the table below for the LED status. | Onboard Power LED Indicator | | | |-----------------------------|------------|--| | LED Color | Definition | | | Green: | BMC Normal | | | Blinking | | | ### **Unit ID LED** A rear UID LED indicator at UID_LED1 is located near the UID switch on the back panel. This UID indicator provides easy identification of a system.unit that may need service. | UID LED
LED Indicator | | |--------------------------|-----------------| | LED Color Definition | | | Blue: On | Unit Identified | ### **IPMI LAN LEDs** The dedicated IPMI LAN has two LED indicators. The amber LED on the right indicates activity, while the LED on the left indicates the speed of the connection. See the table below for more information. | IPMI LAN LEDs | | | |------------------|-----------------|------------| | LED | Color/State | Definition | | Link (left) | Green: Solid | 100 Mbps | | Activity (Right) | Amber: Blinking | Active | #### **Onboard Power LED** The Onboard Power LED is located at LE2 on the motherboard. When this LED is on, the system is on. Be sure to turn off the system and unplug the power cord before removing or installing components. Refer to the table below for more information. | Onboard Power LED Indicator | | |-----------------------------|--| | LED Color | Definition | | Off | System Off (power cable not connected) | | Green | System On | # **Chapter 5** # **Software** After the hardware has been installed, you should install the Operating System (OS), configure RAID settings and install the drivers. Necessary drivers and utilities may be found at ftp://ftp.supermicro.com/driver. ## 5.1 OS Installation You must first configure RAID settings (if using RAID) before you install the Windows OS and the software drivers. To configure RAID settings, please refer to the RAID Configuration User Guides posted on our website at www.supermicro.com/support/manuals. ## Installing the Windows OS for a RAID System - Insert
Microsoft's Windows Setup DVD in the DVD drive and the system will start booting up from the DVD. - 2. Insert the USB stick containing Windows drivers to a USB port on the system. **Note:** for older legacy OS's, please use a method to slipstream the drivers. - 3. Select the partition on the drive in which to install Windows. - 4. Browse the USB folder for the proper driver files. - 5. Choose the RAID driver indicated in the Windows OS Setup screen, then choose the hard drive in which you want to install it. - 6. Once all devices are specified, continue with the installation. - 7. After the Windows OS installation is completed, the system will automatically reboot. # Installing Windows to a Non-RAID System - 1. Insert Microsoft's Windows OS Setup DVD in the DVD-ROM drive and the system will start booting up from the DVD. - 2. Continue with the installation. The Windows OS Setup screen will display. - 3. From the Windows OS Setup screen, press the <Enter> key. The OS Setup will automatically load all device files and then continue with the Windows installation. - 4. After the installation has completed, the system will automatically reboot. ## 5.2 Driver Installation The Supermicro FTP site contains drivers and utilities for your system at ftp://ftp.supermicro.com. Some of these must be installed, such as the chipset driver. After accessing the FTP site, go into the CDR_Images directory and locate the ISO file for your motherboard. Download this file to create a DVD of the drivers and utilities it contains. (You may also use a utility to extract the ISO file if preferred.) After creating a DVD with the ISO files, insert the disk into the DVD drive on your system and the display shown in Figure 5-1 should appear. Another option is to go to the Supermicro website at http://www.supermicro.com/products/. Find the product page for your motherboard here, where you may download individual drivers and utilities to your hard drive or a USB flash drive and install from there. **Note:** To install the Windows OS, please refer to the instructions posted on our website at http://www.supermicro.com/support/manuals/. Figure 5-1. Driver & Tool Installation Screen **Note:** Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents. # 5.3 SuperDoctor® 5 The Supermicro SuperDoctor 5 is a program that functions in a command-line or web-based interface for Windows and Linux operating systems. The program monitors such system health information as CPU temperature, system voltages, system power consumption, fan speed, and provides alerts via email or Simple Network Management Protocol (SNMP). SuperDoctor 5 comes in local and remote management versions and can be used with Nagios to maximize your system monitoring needs. With SuperDoctor 5 Management Server (SSM Server), you can remotely control power on/off and reset chassis intrusion for multiple systems with SuperDoctor 5 or IPMI. SuperDoctor 5 Management Server monitors HTTP, FTP, and SMTP services to optimize the efficiency of your operation. Note: The default User Name and Password for SuperDoctor 5 is admin / admin. Figure 5-2. SuperDoctor 5 Interface Display Screen (Health Information) # **5.4 IPMI** The X11DPU-XLL supports the Intelligent Platform Management Interface (IPMI). IPMI is used to provide remote access, monitoring and management. There are several BIOS settings that are related to IPMI. For general documentation and information on IPMI, please visit our website at: http://www.supermicro.com/products/nfo/IPMI.cfm. # **Chapter 6** ## **BIOS** ## 4.1 Introduction This chapter describes the AMIBIOS™ Setup utility for the X11DPU-X/-XLL motherboard. The BIOS is stored on a chip and can be easily upgraded using a flash program. **Note:** Due to periodic changes to the BIOS, some settings may have been added or deleted and might not yet be recorded in this manual. Please refer to the Manual Download area of our website for any changes to BIOS that may not be reflected in this manual. ## **Starting the Setup Utility** To enter the BIOS setup utility, press the <Delete> key while the system is booting-up. (In most cases, the <Delete> key is used to invoke the BIOS setup screen. There are a few cases when other keys are used, such as <F1>, <F2>, etc.) Each main BIOS menu option is described in this manual. The Main BIOS screen has two main frames. The left frame displays all the options that can be configured. "Grayed-out" options cannot be configured. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it. (Note that BIOS has default text messages built in. We retain the option to include, omit, or change any of these text messages.) Settings printed in Bold are the default values. A "▶" indicates a submenu. Highlighting such an item and pressing the <Enter> key will open the list of settings within that submenu. The BIOS setup utility uses a key-based navigation system called hot keys. Most of these hot keys (<F1>, <F10>, <Enter>, <ESC>, <Arrow> keys, etc.) can be used at any time during the setup navigation process. # 6.2 Main Setup When you first enter the AMI BIOS setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS setup screen is shown below. The following Main menu items will be displayed: ### System Date/System Time Use this item to change the system date and time. Highlight System Date or System Time using the arrow keys. Enter new values using the keyboard. Press the <Tab> key or the arrow keys to move between fields. The date must be entered in Day MM/DD/YYYY format. The time is entered in HH:MM:SS format. **Note:** The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00. The date's default value is 01/01/2014 after RTC reset. ### Supermicro X11DPU-X/-XLL ### **BIOS Version** This item displays the version of the BIOS ROM used in the system. ### **Build Date** This item displays the date when the version of the BIOS ROM used in the system was built. ### **CPLD Version** This item displays the version of the CPLD (Complex-Programmable Logical Device) used in the system. # **Memory Information** # **Total Memory** This item displays the total size of memory available in the system. # 6.3 Advanced Setup Configurations Use the arrow keys to select the Advanced submenu and press <Enter> to access the submenu items: **Warning:** Take Caution when changing the Advanced settings. An incorrect value, an incorrect DRAM frequency, or an incorrect BIOS timing setting may cause the system to malfunction. When this occurs, restore the setting to the manufacture default setting. # ► Performance Tuning (For X11DPU-X only) ### **Cores Enabled** Use this item to select how man CPU cores will be enabled. For example: if the CPU has 8 cores, then 1 to 8 cores can be enabled and the values available would be 0,1,2,3,4,5,6 and 7. The value chosen equals to the number of cores enabled, henceforth, selecting "3" would enable three cores and selecting "5" would enable five cores. The only exception to this is selecting "0" which enables all cores. The default value is: **0** (all cores). ### **Hyper-Speed** Use this item to select the hardware acceleration level of the machine. CPU, Memory, PCIe, and related-components will be accelerated in lockstep. Please note that an improper hyperspeed setting may impede the stability of your machine. The options are Disabled, Level 1, and Level 2. # ▶ Performance Tuning (For X11DPU-XLL only) ### Cores Enabled Use this item to select how man CPU cores will be enabled. For example: if the CPU has 8 cores, then 1 to 8 cores can be enabled and the values available would be 0,1,2,3,4,5,6 and 7. The value chosen equals to the number of cores enabled, henceforth, selecting "3" would enable three cores and selecting "5" would enable five cores. The only exception to this is selecting "0" which enables all cores. The default value is: **0** (all cores). ### **Hyper-Speed** Use this item to select the hardware acceleration level of the machine. CPU, Memory, PCIe, and related-components will be accelerated in lockstep. Please note that an improper hyperspeed setting may impede the stability of your machine. The options are Disabled, Level 1, and **Level 2**. ### **Hyper-Turbo** Use this item to select the level to maximize the power of the Turbo-Mode feature embedded in the CPU. Please note that an improper hyper-turbo setting may impede the stability of your machine. The options are **Enabled** Disabled. ## **▶**Boot Feature #### **Quiet Boot** Use this feature to select the screen between displaying POST messages or the OEM logo at bootup. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and Disabled. **Note:** POST message is always displayed regardless of the item setting. ### **Option ROM Messages** Use this feature to set the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are **Force BIOS** and Keep Current. ### **Bootup NumLock State** Use this feature to set the Power-on state for the Numlock key. The options are Off and On. ### Wait For 'F1' If Error Select Enabled to force the system to wait until the 'F1' key is pressed if an error occurs. The options are
Disabled and **Enabled**. ### **INT19 Trap Response** Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Immediate, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup immediately and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Postponed, the ROM BIOS of the host adaptors will not capture Interrupt 19 immediately and allow the drives attached to these adaptors to function as bootable devices at bootup. The options are **Immediate** and Postponed. ### **Re-try Boot** When EFI (Expansible Firmware Interface) Boot is selected, the system BIOS will automatically reboot the system from an EFI boot device after an initial boot failure. Select Legacy Boot to allow the BIOS to automatically reboot the system from a Legacy boot device after an initial boot failure. The options are **Disabled**, Legacy Boot, and EFI Boot. ## **Install Windows 7 USB support** EHCI needs to be supported in order for USB 2.0 to work properly during the installation of Windows 7; however EHCI support was removed from Intel Skylake Platforms. When enabled, this feature will allow USB keyboard and mouse to work properly during installation of Windows 7. After installation of Windows 7 and all the drivers please disable this feature. The options are **Disabled** and Enabled. #### Port 61h Bit-4 Emulation Select Enabled to enable the emulation of Port 61h bit-4 toggling in SMM (System Management Mode). The options are **Disabled** and Enabled. # **Power Configuration** ### **Watch Dog Function** Select Enabled to allow the Watch Dog timer to reboot the system when it is inactive for more than 5 minutes. The options are **Disabled** and Enabled. ### **Restore on AC Power Loss** Use this feature to set the power state after a power outage. Select Power-Off for the system power to remain off after a power loss. Select Power-On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last power state before a power loss. The options are Power-On, Stay-Off and Last State. ### **Power Button Function** This feature controls how the system shuts down when the power button is pressed. Select 4 Seconds Override for the user to power off the system after pressing and holding the power button for 4 seconds or longer. Select Instant Off to instantly power off the system as soon as the user presses the power button. The options are **Instant Off** and 4 Seconds Override. ### Throttle on Power Fail When enabled, this feature decreases system power by throttling CPU frequency when power supply has failed. The options are **Disabled** and Enabled. # **▶**CPU Configuration **Warning:** Setting the wrong values in the following sections may cause the system to malfunction. # **▶**Processor Configuration The following CPU information will be displayed: - Processor BSP Revision - Processor Socket - Processor ID - Processor Frequency - Processor Max Ratio - Processor Min Ratio - Microcode Revision - L1 Cache RAM - L2 Cache RAM - L3 Cache RAM - Processor 0 Version - Processor 1 Version ### Hyper-Threading (ALL) Select Enable to use Intel Hyper-Threading Technology to enhance CPU performance. The options are **Disabled** and Enabled. ### **Execute Disable Bit (Available if supported by the OS & the CPU)** Select Enable to enable Execute Disable Bit support which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor, damaging the system during a virus attack. The options are Disable and **Enable**. (Refer to Intel and Microsoft websites for more information.) ### Intel Virtualization Technology Select Enable to use Intel Virtualization Technology which will allow the I/O device assignments to be directly reported to the VMM (Virtual Memory Management) through the DMAR ACPI tables. This feature offers fully-protected I/O resource-sharing across the Intel platforms, providing the user with greater reliability, security and availability in networking and data-sharing. The settings are Disable and **Enable**. #### **PPIN Control** Select Unlock/Enable to use the Protected-Processor Inventory Number (PPIN) in the system. The options are Unlock/Disable and **Unlock/Enable**. ### Hardware Prefetcher (Available when supported by the CPU) If this feature is set to Enable, the hardware prefetcher will prefetch streams of data and instructions from the main memory to the Level 2 (L2) cache to improve CPU performance. The options are **Enable** and Disable. ### Adjacent Cache Prefetch (Available when supported by the CPU) Select Enable for the CPU to prefetch both cache lines for 128 bytes as comprised. Select Disable for the CPU to prefetch both cache lines for 64 bytes. The options are **Enable** and Disable. **Note:** Please power off and reboot the system for the changes you've made to take effect. Please refer to Intel's website for detailed information. ### DCU Streamer Prefetcher (Available when supported by the CPU) If this item is set to Enable, the DCU (Data Cache Unit) streamer prefetcher will prefetch data streams from the cache memory to the DCU (Data Cache Unit) to speed up data accessing and processing for CPU performance enhancement. The options are **Enable** and Disable. #### **DCU IP Prefetcher** If this item is set to Enable, the IP prefetcher in the DCU (Data Cache Unit) will prefetch IP addresses to improve network connectivity and system performance. The options are **Enable** and Disable. #### **LLC Prefetch** If this feature is set to Enable, LLC (hardware cache) prefetching on all threads will be supported. The options are **Disable** and Enable. ### Extended APIC (Extended Advanced Programmable Interrupt Controller) Based on the Intel Hyper-Threading technology, each logical processor (thread) is assigned 256 APIC IDs (APIDs) in 8-bit bandwidth. When this feature is set to Enable, the APIC ID will be expanded from 8 bits to 16 bits to provide 512 APIDs to each thread to enhance CPU performance. The options are **Disable** and Enable. ### **AES-NI** Select Enable to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are **Disable** and Enable. ## ► Advanced Power Management Configuration ## **Power Technology** This feature allows for switching between stored CPU Power Management profiles. The options are Disable, Energy Efficient and Custom. ### ► CPU P State Control ### SpeedStep (PStates) EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency in an effort to reduce power consumption and heat dissipation. Please refer to Intel's website for detailed information. The options are Disable and **Enable**. ### **EIST PSD Function (Available when SpeedStep is set to Enable)** Use this item to configure the processor's P-State coordination settings. During a P-State, the voltage and frequency of the processor will be reduced when it is in operation. This makes the processor more energy efficient, resulting in further energy gains. The options are **HW_ALL**, SW_ALL and SW-ANY. ### Turbo Mode (Available when SpeedStep is set to Enable) Select Enable for processor cores to run faster than the frequency specified by the manufacturer. The options are Disable and **Enable**. ## ► Hardware PM (Power Management) State Control ### **Hardware P-States** If this feature is set to Disable, hardware will choose a P-state setting for the system based on an OS request. If this feature is set to Native Mode, hardware will choose a P-state setting based on OS guidance. If this feature is set to Native Mode with No Legacy Support, hardware will choose a P-state setting independently without OS guidance. The options are **Disable**, Native Mode, Out of Band Mode, and Native Mode with No Legacy Support. ### ► CPU C State Control ### **Autonomous Core C-State** Select Enable to support Autonomous Core C-State control which will allow the processor core to control its C-State setting automatically and independently. The options are **Disable** and Enable. ## **CPU C6 Report** Select Enable to allow the BIOS to report the CPU C6 state (ACPI C3) to the operating system. During the CPU C6 state, power to all caches is turned off. The options are **Disable**, Enable, Auto. ### **Enhanced Halt State (C1E)** Select Enable to enable "Enhanced Halt State" support, which will significantly reduce the CPU's power consumption by minimizing CPU's clock cycles and reduce voltage during a "Halt State." The options are **Disable** and Enable. # ► Package C State Control ### Package C State Use this feature to set the limit on the C-State package register. The options are **C0/C1 state**, C2 state, C6 (non-Retention) state, C6 (Retention) state, No Limit, and Auto. ## ► CPU T State Control ### **Software Controlled T-States** Select Enable to support Software Controlled Throttling states for CPUs installed on the motherboard. Such throttling states control the running time of CPUs with the goal of cooling down CPUs and preventing them from burning out. The options are **Disable** and Enable. ## **▶**Chipset Configuration **Warning:** Setting the wrong values in the following sections may cause the system to malfunction. ## **▶**North Bridge This feature allows the user to configure the settings for the Intel North Bridge. # **▶UPI (Ultra Path Interconnect) Configuration** This section displays the following UPI General Configuration information: - Number of CPU - Number of IIO - Current UPI Link Speed - Current UPI Link Frequency - UPI Global MMIO Low Base/Limit - UPI Global MMIO High Base/Limit - UPI PCI-E Configuration Base/Size ### **Degrade Precedence** Use this feature to select the degrading precedence option for Ultra Path
Interconnect connections. Select Topology Precedent to degrade UPI features if system options are in conflict. Select Feature Precedent to degrade UPI topology if system options are in conflict. The options are **Topology Precedence** and Feature Precedence. ### Link L0p Enable Select Enable to enable Link L0p. The options are Disable, Enable, and Auto. #### Link L1 Enable Select Enable to enable Link L1 (Level 1 link). The options are Disable, Enable, and Auto. ## **IO Directory Cache** Select Enable for the IODC (I/O Directory Cache) to generate snoops instead of generating memory lockups for remote IIO (InvIToM) and/or WCiLF (Cores). Select Auto for the IODC to generate snoops (instead of memory lockups) for WCiLF (Cores). The options are Disable, **Auto**, Enable for Remote InvItoM Hybrid Push, InvItoM AllocFlow, Enable for Remote InvItoM Hybrid AllocNonAlloc, and Enable for Remote InvItoM and Remote WViLF. #### **SNC** Sub NUMA Clustering (SNC) is a feature that breaks up the Last Level Cache (LLC) into clusters based on address range. Each cluster is connected to a subset of the memory controller. Enabling SNC improves average latency and reduces memory access congestion to achieve higher performance. Select Auto for 1-cluster or 2-clusters depending on IMC interleave. Select Enable for Full SNC (2-clusters and 1-way IMC interleave). The options are **Disable**, Enable, and Auto. #### **XPT Prefetch** XPT Prefetch speculatively makes a copy to the memory controller of a read request being sent to the LLC. If the read request maps to the local memory address and the recent memory reads are likely to miss the LLC, a speculative read is sent to the local memory controller. The options are **Disable** and Enable. ## **KTI Prefetch** KTI Pretech enables memory read to start early on a DDR bus, where the KTI Rx path will directly create a Memory Speculative Read command to the memory controller. The options are Disable and **Enable**. #### Local/Remote Threshold This feature allows the user to set the threshold for the Interrupt Request (IRQ) signal, which handles hardware interruptions. The features are Disable, Enable, **Auto**, Low, Medium, and High. #### Stale AtoS This feature optimizes A to S directory. When all snoop responses found in directory A are found to be Rspl, then all data is moved to directory S and is returned in S-state. The options are **Disable**, Enable, and Auto. #### LLC dead line alloc Select Enable to optimally fill dead lines in LLC. Select Disable to never fill dead lines in LLC. The options are Disable, **Enable**, and Auto. #### Isoc Mode Select Enable to enable Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for Virtualization Technology. The options are Disable, Enable, and **Auto**. ## **►** Memory Configuration #### **Enforce POR** Select POR to enforce POR restrictions for DDR4 memory frequency and voltage programming. The options are **POR** and Disable. ## **Memory Frequency** Use this feature to set the maximum memory frequency for onboard memory modules. The options are **Auto**, 1866, 2000, 2133, 2200, 2400, 2600, and 2666. ## **Data Scrambling for NVDIMM** Select Enable to enable data scrambling for onboard NVDIMM memory to enhance system performance and security. The options are **Auto**, Disable, and Enable. #### **Data Scrambling for DDR4** Select Enable to enable data scrambling for DDR4 memory to enhance system performance and security. The options are **Auto**, Disable, and Enable. ## tCCD_L Relaxation If this feature is set to Enable, SPD (Serial Presence Detect) will override tCCD_L ("Column to Column Delay-Long", or "Command to Command Delay-Long" on the column side.) If this feature is set to Disable, tCCD_L will be enforced based on the memory frequency. The options are Disable and **Auto**. #### **Enable ADR** Select Enable for ADR (Automatic Diagnostic Repository) support to enhance memory performance. The options are **Disable** and Enable. #### 2X Refresh This option allows the user to select 2X refresh mode. The options are **Auto**, Enabled, and Disabled. The options are **Auto** and Enable. ## **Page Policy** This feature allows the user to determine the desired page mode for IMC. When **Auto** is selected, the memory controller will close or open pages based on the current operation. Closed policy closes that page after reading or writing. Adaptive is similar to open page policy, but can be dynamically modified. The default is **Auto**. ## **IMC** Interleaving This feature allows the user to configure Integrated Memory Controller (IMC) Interleaving settings. The options are **Auto**, 1-way Interleave, and 2-way Interleave. ## **Turn off Memory Error LED** This feature allows the user to turn off/on the Memory Error LED indicator on the next system reset. The options are **Do Nothing** or Yes, Next reset. # ► Memory Topology This item displays the information of onboard memory modules as detected by the BIOS. - P1 DIMMA1 - P1 DIMMB1 - P1 DIMMC1 - P1 DIMMD1 - P1 DIMME1 - P1 DIMMF1 - P2 DIMMA1 - P2 DIMMB1 - P2 DIMMC1 - P2 DIMMD1 - P2 DIMME1 - P2 DIMMF1 # ► Memory RAS (Reliability_Availability_Serviceability) Configuration Use this submenu to configure the following Memory RAS settings. ## Static Virtual Lockstep Mode Select Enable to support Static Virtual Lockstep mode to enhance memory performance. The options are **Disable** and Enable. #### **Mirror Mode** Select Enable to set all 1LM/2LM memory installed in the system on the mirror mode, which will create a duplicate copy of data stored in the memory to increase memory security, but it will reduce the memory capacity into half. The options are **Disable**, Mirror Mode 1LM and Mirror Mode 2LM. #### **UEFI ARM Mirror** Select Enable to support the UEFI-based address range mirroring with setup option. The options are **Disable** and Enable. The options are **Disable** and Enable. ## **Memory Rank Sparing** Select Enable to support memory-rank sparing to optimize memory performance. The options are **Disable** and Enable. Note: This item will not be available when memory mirror mode is enabled. ## **Correctable Error Threshold** Use this item to enter the threshold value for correctable memory errors. The default setting is **10**. #### **SDDC Plus One** Select Enable for SDDC (Single Device Data Correction) Plus One support, which will increase the reliability and serviceability of your system memory. The options are **Disable** and Enable. ## ADDDC (Adaptive Double Device Data Correction) Sparing Select Enable for ADDDC sparing support to enhance memory performance. The options are **Disable** and Enable. #### **Patrol Scrub** Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected in a memory module and send the corrections to the requestor (the original source). When this item is set to Enable, the IO hub will read and write back one cache line every 16K cycles if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the IO hub will be scrubbed every day. The options are Disable and **Enable**. #### **Patrol Scrub Interval** Use this item to specify the number of hours (between 0 to 24) required for the system to complete a full patrol scrubbing. Enter 0 for patrol scrubbing to be performed automatically. The default setting is **24**. Note: This item is hidden when Patrol Scrub item is set to Disable. ## ►IIO Configuration ## **EV DFX (Device Function On-Hide) Features** When this feature is set to Enable, the EV_DFX Lock Bits that are located in a processor will always remain clear during electric tuning. The options are **Disable** and Enable. ## **▶**CPU1 Configuration ## IOU0 (IIO PCIe Br1) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**. #### IOU1 (IIO PCIe Br2) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**. #### IOU2 (IIO PCIe Br3) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**. ## MCP0 (IIO PCIe Br4) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x16 and **Auto**. ## MCP1 (IIO PCIe Br5) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x16 and **Auto**. ## ►AOC-2UR68-i4G SLOT3 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. ## ►AOC-2UR68-i4G SLOT1 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. ## ► CPU1 PcieBr2D02F0 - Port 2C ## Link Speed This item configures the link
speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. #### ► CPU1 PcieBr2D02F0 - Port 2D ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. ## ►RSC-R2UW-2E8E16+ SLOT1 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and **Common**. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. # **▶**CPU2 Configuration ## IOU0 (IIO PCIe Br1) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**. ## IOU1 (IIO PCle Br2) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**. ## IOU2 (IIO PCIe Br3) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16, and **Auto**. ## MCP0 (IIO PCIe Br4) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x16 and **Auto**. ## MCP1 (IIO PCIe Br5) This item configures the PCI-E Bifuraction setting for a PCI-E port specified by the user. The options are x16 and **Auto**. ## ►P2_NVMe0 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and **Common**. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. # ▶P2_NVMe1 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. ## ►AOC-2UR68-i4G SLOT2 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. ## ▶RSC-R1UW-2E16 SLOT2 ## Link Speed This item configures the link speed of a PCI-E port specified by the user. The options are **Auto**, Gen 1 (Generation 1) (2.5 GT/s), Gen 2 (Generation 2) (5 GT/s), and Gen 3 (Generation 3) (8 GT/s) The following information will be displayed as well: - PCI-E Port Link Status - PCI-E Port Link Max - PCI-E Port Link Speed ## **PCI-E Port Clocking** The options are Distinct and Common. ## **PCI-E Port Max Payload Size** Select Auto for the system BIOS to automatically set the maximum payload value for a PCI-E device specified by to user to enhance system performance. The options are 128B, 256B and **Auto**. # ► IOAT Configuration ## **Disable TPH (TLP Processing Hint)** TPH is used for data-tagging with a destination ID and a few important attributes. It can send critical data to a particular cache without writing through to memory. Select No in this item for TLP Processing Hint support, which will allow a "TPL request" to provide "hints" to help optimize the processing of each transaction occurred in the target memory space. The options are **No** and Yes. ## **Prioritize TPH (TLP Processing Hint)** Select Yes to prioritize the TPL requests that will allow the "hints" to be sent to help facilitate and optimize the processing of certain transactions in the system memory. The options are Enable and **Disable**. ## **Relaxed Ordering** Select Enable to enable Relaxed Ordering support which will allow certain transactions to violate the strict-ordering rules of PCI and to be completed prior to other transactions that have already been enqueued. The options are **Disable** and Enable. ## ►Intel VT for Directed I/O (VT-d) ## Intel® VT for Directed I/O (VT-d) Select Enable to use Intel Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Enable** and Disable. ## **Interrupt Remapping** Select Enable for Interrupt Remapping support to enhance system performance. The options are **Enable** and Disable. ## PassThrough DMA Select Enable for the Non-Iscoh VT-d engine to pass through DMA (Direct Memory Access) to enhance system performance. The options are **Enable** and Disable. #### **ATS** Select Enable to enable ATS (Address Translation Services) support for the Non-Iscoh VT-d engine to enhance system performance. The options are **Enable** and Disable. ## **Posted Interrupt** Select Enable to support VT_D Posted Interrupt which will allow external interrupts to be sent directly from a direct-assigned device to a client machine in non-root mode to improve virtualization efficiency by simplifying interrupt migration and lessening the need of physical interrupts. The options are **Enable** and Disable. #### **Coherency Support (Non-Isoch)** Select Enable for the Non-Iscoh VT-d engine to pass through DMA (Direct Memory Access) to enhance system performance. The options are **Enable** and Disable. ## ▶Intel® VMD Technology ## ►Intel® VMD for Volume Management Device on CPU1 ## VMD Config for PStack0 ### Intel® VMD for Volume Management Device Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and Enable. *If the item "Intel VMD for Volume Management Device" above is set to Enable, the following items will be dislayed: # CPU SLOT6 PCI-E 3.0 X8 VMD (Available when the device is detected by the system) Select Enable to use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and Enable. # CPU SLOT4 PCI-E 3.0 X8 VMD (Available when the device is detected by the system) Select Enable to use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and Enable. ## Hot Plug Capable (Available when the device is detected by the system) Use this feature to enable hot plug support for PCle root ports 1A~1D. The options are **Disable** and Enable. ## VMD Config for PStack1 ## Intel® VMD for Volume Management Device Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and Enable. *If the item "Intel VMD for Volume Management Device" above is set to Enable, the following items will be dislayed: # CPU SLOT5 PCI-E 3.0 X16 VMD (Available when the device is detected by the system) Select Enable to use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and Enable. ## Hot Plug Capable (Available when the device is detected by the system) Select Enable to enable hot plug support for PCle root ports 2A~2D. The options are **Disable** and Enable. ## VMD Config for PStack2 ## Intel® VMD for Volume Management Device Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and Enable. *If the item "Intel VMD for Volume Management Device" above is set to Enable, the following items will be dislayed: # CPU SLOT2 PCI-E 3.0 X8 VMD (Available when the device is detected by the system) Select Enable to
use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and Enable. # CPU SLOT1 PCI-E 3.0 X4 VMD (Available when the device is detected by the system) Select Enable to use the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and Enable. #### Hot Plug Capable (Available when the device is detected by the system) Select Enable to enable hot plug support for PCIe root ports 3A~3D. This will allow the user to replace the components without shutting down the system. The options are **Disable** and Enable. ## ►Intel® VMD for Volume Management Device on CPU2 ## VMD Config for PStack2 ## Intel® VMD for Volume Management Device Select Enable to use the Intel Volume Management Device Technology for this stack. The options are **Disable** and Enable. *If the item "Intel VMD for Volume Management Device" above is set to Enable, the following items will be dislayed: # CPU SLOT3 PCI-E 3.0 X16 VMD (Available when the device is detected by the system) Select Enable to enable hot plug support for the Intel Volume Management Device Technology for this specific root port. The options are **Disable** and Enable. ## Hot Plug Capable (Available when the device is detected by the system) Use this feature to enable hot plug support for PCle root ports 3A~3D. The options are **Disable** and Enable. ## **IIO-PCIE Express Global Options** ## **PCI-E Completion Timeout Disable** Select Enable to enable PCI-E Completion Timeout support for electric tuning. The options are Yes, **No**, and Per-Port. ## **▶**South Bridge The following South Bridge information will display: - USB Module Version - USB Devices ## **Legacy USB Support** Select Enabled to support onboard legacy USB devices. Select Auto to disable legacy support if there are no legacy USB devices present. Select Disable to have all USB devices available for EFI applications only. The options are **Enabled**, Disabled and Auto. #### **XHCI Hand-Off** This is a work-around solution for operating systems that do not support XHCI (Extensible Host Controller Interface) hand-off. The XHCI ownership change should be claimed by the XHCI driver. The options are Enabled and **Disabled**. ## Port 60/64 Emulation Select Enabled for I/O port 60h/64h emulation support, which in turn, will provide complete legacy USB keyboard support for the operating systems that do not support legacy USB devices. The options are Disabled and **Enabled**. ## **PCIe PLL SSC** Use this feature to enable PCIE PLL spread spectrum clocking (SSC). The options are **Disable** and Enable. # ► Server ME (Management Engine) Configuration This feature displays the following General ME Configuration settings. Operational Firmware Version Backup Firmware Version Recovery Firmware Version ME Firmware Status #1 ME Firmware Status #2 **Current State** Error Code ## ▶PCH SATA Configuration (For X11DPU-X only) When this submenu is selected, the AMI BIOS automatically detects the presence of the SATA devices that are supported by the Intel PCH chip and displays the following items: #### **SATA Controller** This item enables or disables the onboard SATA controller supported by the Intel PCH chip. The options are **Enable** and Disable. # Configure SATA as (Available when the item above: SATA Controller is set to enabled) Select AHCI to configure a SATA drive specified by the user as an AHCI drive. Select RAID to configure a SATA drive specified by the user as a RAID drive. The options are **AHCI** and RAID. (**Note:** This item is hidden when the SATA Controller item is set to Disabled.) #### **SATA HDD Unlock** Select Enable to unlock SATA HDD password in the OS. The options are **Enable** and Disable. # SATA/sSATA RAID Boot Select (Available when the item "Configure SATA as" is set to "RAID") This feature allows the user to decide which controller should be used for system boot. The options are None, SATA Controller, **sSATA Controller**, and Both. #### **Aggressive Link Power Management** When this item is set to Enabled, the SATA AHCI controller manages the power use of the SATA link. The controller will put the link in a low power mode during an extended period of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are Enable and **Disable**. # SATA RAID Option ROM/UEFI Driver (Available when the item "Configure SATA as" is set to "RAID") Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are Disable, EFI, and **Legacy**. #### SATA Port 0 - SATA Port 7 ## **Hot Plug** Select Enable to support Hot-plugging for the device installed on a selected SATA port which will allow the user to replace the device installed in the slot without shutting down the system. The options are Enable and **Disable**. ## Spin Up Device On an edge detect from 0 to 1, set this item to allow the SATA device installed on the SATA port specified by the user to start a COMRESET initialization. The options are Enable and **Disable**. ## **SATA Device Type** Use this item to specify if the device installed on the SATA port selected by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive. # ▶PCH sSATA Configuration (For X11DPU-X only) When this submenu is selected, AMI BIOS automatically detects the presence of the sSATA devices that are supported by the sSATA controller and displays the following items: #### sSATA Controller This item enables or disables the onboard sSATA controller supported by the Intel SCU. The options are **Enable** and Disable. ## Configure sSATA as Select AHCI to configure an sSATA drive specified by the user as an AHCI drive. Select RAID to configure an sSATA drive specified by the user as a RAID drive. The options are **AHCI** and RAID. (**Note:** This item is hidden when the sSATA Controller item is set to Disabled.) #### **SATA HDD Unlock** Select Enable to unlock sSATA HDD password in the OS. The options are **Enable** and Disable. # SATA/sSATA RAID Boot Select (Available when the item "Configure SATA as" is set to "RAID") This feature allows the user to decide which controller should be used for system boot. The options are None, SATA Controller, **sSATA Controller**, and Both. ## **Support Aggressive Link Power Management** When this item is set to Enable, the sSATA AHCI controller manages the power use of the SATA link. The controller will put the link in a low power mode during an extended period of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are **Disable** and Enable. # sSATA RAID Option ROM/UEFI Driver (Available when the item "Configure SATA as" is set to "RAID") Select EFI to load the EFI driver for system boot. Select Legacy to load a legacy driver for system boot. The options are Disable, EFI, and **Legacy**. ## sSATA Port 0 - sSATA Port 5 ## **Hot Plug** Select Enable to support Hot-plugging for the device installed on an sSATA port selected by the user which will allow the user to replace the device installed in the slot without shutting down the system. The options are **Disable** and Enabled. ## Spin Up Device On an edge detect from 0 to 1, set this item to allow the sSATA device installed on the sSATA port specified by the user to start a COMRESET initialization. The options are Enable and **Disable**. #### sSATA Device Type Use this item to specify if the device installed on the sSATA port specified by the user should be connected to a Solid State drive or a Hard Disk Drive. The options are **Hard Disk Drive** and Solid State Drive. # ▶PCIe/PCI/PnP Configuration The following PCI information will be displayed: PCI Bus Driver Version PCI Devices Common Settings: ## Above 4G Decoding (Available if the system supports 64-bit PCI decoding) Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Disabled and **Enabled**. ## SR-IOV Support (Available if the system supports Single-Root Virtualization) Select Enabled for Single-Root IO Virtualization support. The options are **Disabled** and Enabled. ## **MMIO High Base** Use this item to select the base memory size according to memory-address mapping for the IO hub. The base memory size must be between 4032G to 4078G. The options are **56T**, 48T, 24T, 16T, 4T, and 1T. ## **MMIO High Granularity Size** Use this item to select the high memory size according to memory-address mapping for the IO hub. The options are 1G, 4G, 16G, 64G, **256G**, and 1024G. ## **PCI PERR/SERR Support** Use this feature to enable or disable the runtime event for SERR (System Error)/ PERR (PCI/ PCI-E Parity Error). The options are **Disabled** and Enabled. ## **Maximum Read Request** Select Auto for the system BIOS to automatically set the maximum size for a read request for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, 256 Bytes, 512 Bytes, 1024 Bytes, 2048 Bytes, and 4096 Bytes. #### **MMCFG** Base This feature determines the lowest MMCFG (Memory-Mapped Configuration) base assigned to PCI devices. The options are 1G, 1.5G, 1.75G. **2G**, 2.25G, and 3G. #### **NVMe Firmware Source** This feature determines the lowest MMCFG (Memory-Mapped Configuration) base assigned to PCI devices. The options are **Vendor Defined Firmware** and AMI Native Support. ## **VGA Priority** Use this item to select the graphics device to be used as the primary video display for system boot. The options are Auto, **Onboard** and Offboard. ## RSC-R1UW-2E16 SLOT(1-2) PCI-E X16 OPROM Select Disabled to deactivate the selected slots, Legacy to activate the slot in legacy mode, and EFI to activate the slot in EFI mode. The options are Disabled, **Legacy**, and EFI. #### AOC-2UR68-i4G SLOT2/3/1 PCI-E 3.0 x16/x8 OPROM Select Disabled to deactivate the selected slots, Legacy to activate the slot
in legacy mode, and EFI to activate the slot in EFI mode. The options are Disabled, **Legacy**, and EFI. ## **Onboard LAN Option ROM Type** Use this to select firmware type to be loaded for onboard LANs. The options are **Legacy** and EFI. ## Onboard LAN(1-4) Option ROM Use this to select firmware function to be loaded for onboard LAN(1-4). The options are Disabled, **PXE** and iSCSI. ## Onboard NVME1/NVME2/NVME3/NVME4 Option ROM Select EFI to allow the user to boot the computer using an EFI (Expansible Firmware Interface) device installed on the NVME connector specified by the user. Select Legacy to allow the user to boot the computer using a legacy device installed on the NVME connector specified by the user. The options are Disabled, Legacy and **EFI**. ## **Onboard Video Option ROM** Use this feature to select the Onboard Video Option ROM type. The options are Disabled, **Legacy** and EFI. ## **▶** Network Stack Configuration #### **Network Stack** Select Enabled to enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Disabled and **Enabled**. ## *If "Network Stack" is set to Enabled, the following items will display: ## **Ipv4 PXE Support** Select Enabled to enable Ipv4 PXE boot support. If this feature is disabled, it will not create the Ipv4 PXE boot option. The options are Disabled and **Enabled**. ## **Ipv4 HTTP Support** Select Enabled to enable Ipv4 HTTP boot support. If this feature is disabled, it will not create the Ipv4 HTTP boot option. The options are **Disabled** and Enabled. ## **Ipv6 PXE Support** Select Enabled to enable Ipv6 PXE boot support. If this feature is disabled, it will not create the Ipv6 PXE boot option. The options are Disabled and **Enabled**. ## **Ipv6 HTTP Support** Select Enabled to enable Ipv6 HTTP boot support. If this feature is disabled, it will not create the Ipv6 HTTP boot option. The options are **Disabled** and Enabled. #### **PXE Boot Wait Time** Use this feature to select the wait time to press the <ESC> key to abort the PXE boot. The default is **0**. #### **Media Detect Count** Select this to assign the number of times presence of media will be checked. The default is 1. ## **▶** Super IO Configuration ## **Super IO Chip AST2500** ## ► Serial Port 1 Configuration #### **Serial Port 1** Select Enabled to enable the onboard serial port specified by the user. The options are Disabled and **Enabled**. ## **Device Settings** This item displays the base I/O port address and the Interrupt Request address of a serial port specified by the user. ## **Change Settings** This feature specifies the base I/O port address and the Interrupt Request address of Serial Port 1. Select **Auto** for the BIOS to automatically assign the base I/O and IRQ address to a serial port specified. The options for Serial Port 1 are **Auto**, (IO=3F8h; IRQ=4), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12); (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12). # ► Serial Port 2 Configuration #### **Serial Port 2** Select Enabled to enable the onboard serial port specified by the user. The options are Disabled and Enabled. ## **Device Settings** This item displays the base I/O port address and the Interrupt Request address of a serial port specified by the user. **Note:** This item is hidden when Serial Port 2 is set to Disabled. ## **Change Settings** This feature specifies the base I/O port address and the Interrupt Request address of Serial Port 2. Select Auto for the BIOS to automatically assign the base I/O and IRQ address to a serial port specified. The options for Serial Port 2 are **Auto**, (IO=2F8h; IRQ=3), (IO=3F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), (IO=2F8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12); (IO=3E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12), and (IO=2E8h; IRQ=3, 4, 5, 6, 7, 9, 10, 11, 12). #### **Serial Port 2 Attribute** Select SOL to use COM Port 2 as a Serial_Over_LAN (SOL) port for console redirection. The options are **SOL** and COM. ## ► Serial Port Console Redirection #### **COM 1 Console Redirection** Select Enabled to enable COM Port 1 for Console Redirection, which will allow a client machine to be connected to a host machine at a remote site for networking. The options are **Disabled** and Enabled. *If the item above set to Enabled, the following items will become available for configuration: # ► Console Redirection Settings (for COM1) ## **Terminal Type** Use thid feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8 and ANSI. #### Bits Per second Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second). ### **Data Bits** Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and 8 (Bits). #### **Parity** A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space. ## **Stop Bits** A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and 2. #### Flow Control Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS. ## **VT-UTF8 Combo Key Support** Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Disabled and **Enabled**. #### **Recorder Mode** Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and Enabled. #### Resolution 100x31 Select Enabled for extended-terminal resolution support. The options are Disabled and **Enabled**. ## **Legacy OS Redirection Resolution** Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are **80x24** and 80x25. ## **Putty KeyPad** This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, LINUX, XTERMR6, SCO, ESCN, and VT400. #### **Redirection After BIOS Post** Use this feature to enable or disable legacy Console Redirection after BIOS POST. When the option-Bootloader is selected, legacy Console Redirection is disabled before booting the OS. When the option-Always Enable is selected, legacy Console Redirection remains enabled upon OS bootup. The options are **Always Enable** and Bootloader. ## SOL (Serial-Over-LAN) Console Redirection Select Enabled to use the SOL port for Console Redirection. The options are Disabled and **Enabled**. *If the item above set to Enabled, the following items will become available for user's configuration: ## ► Console Redirection Settings (for SOL) Use this feature to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user. ## **Terminal Type** Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8 and ANSI. #### Bits Per second Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second). #### **Data Bits** Use this feature to set the data transmission size for Console Redirection. The options are 7 (Bits) and 8 (Bits). ## **Parity** A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space. ## **Stop Bits** A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and 2. #### Flow Control Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving
buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS. ## **VT-UTF8 Combo Key Support** Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are Disabled and **Enabled**. #### **Recorder Mode** Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and Enabled. ## Resolution 100x31 Select Enabled for extended-terminal resolution support. The options are Disabled and **Enabled**. ## **Legacy OS Redirection Resolution** Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are **80x24** and 80x25. ## **Putty KeyPad** This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, LINUX, XTERMR6, SCO, ESCN, and VT400. #### **Redirection After BIOS Post** Use this feature to enable or disable legacy Console Redirection after BIOS POST (Power-On Self-Test). When this feature is set to Bootloader, legacy Console Redirection is disabled before booting the OS. When this feature is set to Always Enable, legacy Console Redirection remains enabled upon OS boot. The options are **Always Enable** and Bootloader. # ► Legacy Console Redirection ## **Legacy Serial Redirection Port** Use the feature to select the COM port to display redirection of Legacy OS and Legacy OPROM messages. The default setting is **COM1** and SOL. # Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS) The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management. ## **Console Redirection (for EMS)** Select Enabled to use a COM port selected by the user for EMS Console Redirection. The options are **Disabled** and Enabled. *If the item above set to Enabled, the following items will become available for user's configuration: # **▶** Console Redirection Settings (EMS) ## **Out-of-Band Management Port** The feature selects a serial port in a client server to be used by the Windows Emergency Management Services (EMS) to communicate with a remote host server. The options are **COM1** and SOL. ## **Terminal Type** Use this feature to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8 and ANSI. #### Bits Per Second This feature sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in both host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second). #### Flow Control Use this feature to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop data-sending when the receiving buffer is full. Send a "Start" signal to start data-sending when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS and Software Xon/Xoff. Data Bits: 8 Parity: None Stop Bits: 1 # **▶**ACPI Settings Use this feature to configure Advanced Configuration and Power Interface (ACPI) power management settings for your system. ## **NUMA Support (Available when the OS supports this feature)** Select Enabled to enable Non-Uniform Memory Access support to enhance system performance. The options are Disabled and **Enabled**. ## **WHEA Support** Select Enabled to support the Windows Hardware Error Architecture (WHEA) platform and provide a common infrastructure for the system to handle hardware errors within the Windows OS environment to reduce system crashes and to enhance system recovery and health monitoring. The options are Disabled and **Enabled**. ## **High Precision Timer** Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback and reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are Disabled and **Enabled**. # ▶ Trusted Computing (Available when a TPM device is installed and detected by the BIOS) When a TPM (Trusted-Platform Module) device is detected in your machine, the following information will be displayed. - TPM2.0 Device Found - Vendor - Firmware Version ## **Security Device Support** If this feature and the TPM jumper (JPT1) on the motherboard are both enabled, the onboard security (TPM) device will be enabled in the BIOS to enhance data integrity and system security. Please note that the OS will not show the security device. Neither TCG EFI protocol nor INT1A interaction will be made available for use. If you have made changes on the setting on this item, be sure to reboot the system for the change to take effect. The options are Disable and **Enable**. If this option is set to Enable, the following screen and items will display: - · Active PCR Banks - Available PCR Banks ## **Pending Operation** Use this feature to schedule a TPM-related operation to be performed by a security (TPM) device at the next system boot to enhance system data integrity. Your system will reboot to carry out a pending TPM operation. The options are **None** and TPM Clear. **Note**: Your system will reboot to carry out a pending TPM operation. ## Platform Hierarchy (for TPM Version 2.0 and above) Select Enabled for TPM Platform Hierarchy support which will allow the manufacturer to utilize the cryptographic algorithm to define a constant key or a fixed set of keys to be used for initial system boot. This early boot code is shipped with the platform and is included in the list of "public keys". During system boot, the platform firmware uses this trusted public key to verify a digital signature in an attempt to manage and control the security of the platform firmware used in a host system via a TPM device. The options are **Enabled** and Disabled. ## **Storage Hierarchy** Select Enabled for TPM Storage Hierarchy support that is intended to be used for non-privacy-sensitive operations by the platform owner such as an IT professional or the end user. Storage Hierarchy has an owner policy and an authorization value, both of which can be set and are held constant (-rarely changed) through reboots. This hierarchy can be cleared or changed independently of the other hierarchies. The options are **Enabled** and Disabled. ## **Endorsement Hierarchy** Select Enabled for Endorsement Hierarchy support, which contains separate controls to address the user's privacy concerns because the primary keys in this hierarchy are certified by the TPM or a manufacturer to be constrained to an authentic TPM device that is attached to an authentic platform. A primary key can be an encrypted, and a certificate can be created using TPM2_ ActivateCredential. It allows the user to independently enable "flag, policy, and authorization value" without involving other hierarchies. A user with privacy concerns can disable the endorsement hierarchy while still using the storage hierarchy for TPM applications and permitting the platform software to use the TPM. The options are **Enabled** and Disabled. ## PH (Platform Hierarchy) Randomization (for TPM Version 2.0 and above) Select Enabled for Platform Hierarchy Randomization support, which is used only during the platform developmental stage. This feature cannot be enabled in the production platforms. The options are **Disabled** and Enabled. ## **TXT Support** Select Enabled to enable Intel Trusted Execution Technology (TXT) support to enhance system security and data integrity. The options are **Disabled** and Enabled. **Note 1**: If the option for this item (TXT Support) is set to Enabled, be sure to disable EV DFX (Device Function On-Hide) support for the system to work properly. (EV DFX is under "IIO Configuration" in the "Chipset/North Bridge" submenu). **Note 2:** For more information on TPM, please refer to the TPM manual at http://www.supermicro.com/manuals/other. # **▶**iSCSI Configuration #### iSCSI Initiator Name This feature allows the user to enter the unique name of the iSCSI Initiator in IQN format. Once the name of the iSCSI Initiator is entered into the system, configure the proper settings for the following items. - ► Add an Attempt - **▶** Delete Attempts - ► Change Attempt Order ## ►Intel® Virtual RAID on CPU When this submenu is selected and the RAID devices are detected, the BIOS screen displays the following items: Intel® VROC with VMD Technology 5.0.0.1205 # 6.4 Event Logs Use this feature to configure Event Log settings. # ► Change SMBIOS Event Log Settings ## **Enabling/Disabling Options** ## **SMBIOS Event Log** Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are Disabled. and **Enabled**. ## **Erasing Settings** #### **Erase Event Log** Select Enabled to erase all error events in the SMBIOS (System Management BIOS) log before an event logging is initialized at bootup. The options are **No**; Yes, Next Reset; Yes, Every Reset. ### When Log is Full Select Erase Immediately to immediately erase all errors in the SMBIOS event log when the event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are **Do Nothing** and Erase Immediately. ## **SMBIOS Event Log Standard Settings** ## **Log System Boot Event** Select Enabled to log system boot
events. The options are Enabled and **Disabled**. ## **MECI (Multiple Event Count Increment)** Enter the increment value for the multiple event counter. Enter a number between 1 to 255. The default setting is **1**. ## **METW (Multiple Event Count Time Window)** This item is used to determine how long (in minutes) should the multiple event counter wait before generating a new event log. Enter a number between 0 to 99. The default setting is **60**. **Note:** Please reboot the system for the changes to take effect. # **▶**View SMBIOS Event Log This item allows the user to view the event in the system event log. Select this item and press <Enter> to view the status of an event in the log. The following categories are displayed: ## **Date/Time/Error Code/Severity** ## 6.5 **IPMI** When you select this submenu and press the <Enter> key, the following information will display: - IPMI Firmware Revision: This item indicates the IPMI firmware revision used in your system. - Status of BMC: This item indicates the status of the BMC (Baseboard Management Controller) installed in your system. # ► System Event Log ## **Enabling/Disabling Options** ## **SEL Components** Select Enabled for all system event logging at bootup. The options are Disabled and **Enabled**. #### **Erasing Settings** #### **Erase SEL** Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are **No**; Yes, On next reset; Yes, On every reset. #### When SEL is Full This feature allows the user to determine what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are **Do Nothing** and Erase Immediately. **Note**: After making changes on a setting, be sure to reboot the system for the changes to take effect. # **▶BMC Network Configuration** ## **BMC Network Configuration** ## **Configure IPV4 Support** This section displays configuration features for IPV4 support. ### **IPMI LAN Selection** This item displays the IPMI LAN setting. The default setting is Failover. #### **IPMI Network Link Status** This item displays the IPMI Network Link status. The default setting is Shared LAN. ## **Update IPMI LAN Configuration** Select Yes for the BIOS to implement all IP/MAC address changes at the next system boot. The options are **No** and Yes. *If the item above is set to Yes, the following item will become available for configuration: ## **Configuration Address Source** This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **DHCP** and Static. *If the item above is set to Static, the following items will become available for configuration: #### **Station IP Address** This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253). #### Subnet Mask This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255. #### **Station MAC Address** This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers. ## **Gateway IP Address** This item displays the Gateway IP address for this computer. This should be in decimal and in dotted quad form (i.e., 172.31.0.1). #### **VLAN** This item displays the virtual LAN settings. The options are Disable and Enable. ## **Configure IPV6 Support** This section displays configuration features for IPV6 support. #### LAN Channel 1 #### **IPV6 Support** Use this feature to enable IPV6 support. The options are **Enabled** and Disabled. ## **Configuration Address Source** This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **Unspecified**, Static, and DHCP. # *If the item above is set to Static, the following items will become available for configuration: - Station IPV6 Address - Prefix Length - IPV6 Router1 IP Address ## **Update IPMI LAN Configuration** Select Yes for the BIOS to implement all IP/MAC address changes at the next system boot. The options are **No** and Yes. If this option is set to Yes, the following items will activate: ## **Configuration Address Source** # 6.6 Security Settings This menu allows the user to configure the following security settings for the system. ### **Administrator Password** Use this feature to set the administrator password which is required to enter the BIOS setup utility. The length of the password should be from 3 characters to 20 characters long. #### **Password Check** Select Setup for the system to check for a password at Setup. Select Always for the system to check for a password at bootup or upon entering the BIOS Setup utility. The options are **Setup** and Always. ## **▶**Secure Boot When you select this submenu and press the <Enter> key, the following items will display: - · System Mode - Secure Boot - Vendor Keys #### **Secure Boot** If this item is set to Enabled, Secure Boot will be activated when a Platform Key (PK) is entered. A Platform Key is a security key used to manage the security settings of the platform firmware used in your system. The options are **Disabled** and Enabled. #### **Secure Boot Mode** Use this feature to select the desired secure boot mode for the system. The options are Standard and **Custom**. #### **CSM Support** Use this feature to select the desired secure boot mode for the system. The options are **Disabled** and Enabled. # ► Key Management #### **Provision Factory Defaults** Select Enabled to install all manufacturer default keys for the following system security settings. The options are **Disabled** and Enabled. # ► Enroll all Factor Default Keys Select Yes to install all manufacturer defaults for the following system security settings. The options are **Yes** and No. # ► Enroll EFI Image Select this item and press <Enter> to select an EFI (Extensible Firmware Interface) image for the system to operate in Secure Boot mode. #### ► Save All Secure Boot Variables This feature allows the user to set and save the secure boot key variables specified by the user. ## Secure Boot Variable/Size/Key#/Key Sources # ► Platform Key (PK) This feature allows the user to enter and configure a set of values to be used as a platform firmware key for the system. This set of values also indicate the size, the keys numbers, and the key source of the Platform Key. The options are **Save to File**, Set New, and Erase # ▶ Key Exchange Keys This feature allows the user to enter and configure a set of values to be used as a Key-Exchange-Keys for the system. This set of values also indicate the size, the keys numbers, and the key source of the Key-Exchange-Keys. The options are **Save to File**, Set New, Append and Erase. # ► Authorized Signatures This feature allows the user to enter and configure a set of values to be used as Authorized Signatures for the system. This set of values also indicate the size, the keys numbers, and the key source of the Authorized Signatures. The options are **Save to File**, Set New, Append and Erase. # ► Forbidden Signatures This feature allows the user to enter and configure a set of values to be used as Forbidden Signatures for the system. This set of values also indicate the size, the keys numbers, and the key source of the Forbidden Signatures. The options are **Save to File**, Set New, Append and Erase. # ► Authorized TimeStamps This feature allows the user to set and save the timestamps for Authorized Signatures to indicate when these signatures were entered into the system. The options are **Save to File**, Set New, Append and Erase. # **▶**OsRecovery Signatures This feature allows the user to set and save the Authorized Signatures used for OS recovery. The options are **Save to File**, Set New, Append and Erase. # 6.7 Boot Settings Use this feature to configure Boot Settings: #### **Boot Mode Select** Use this feature to select the type of devices that the system is going to boot from. The options are Legacy, UEFI (Unified Extensible Firmware Interface), and **Dual**. #### Legacy to EFI support The options are **Disabled** and Enabled. #### **Fixed Boot Order Priorities** This feature prioritizes the order of a bootable device from which the system will boot. Press <Enter> on each entry from top to bottom to select devices. When the item above -"Boot Mode Select" is set to **Dual** (default), the following items will be displayed for configuration: Boot Option #1 - Boot Option #17 When the item above -"Boot Mode Select" is set to Legacy, the following items will be display for configuration: • Boot Option #1 - Boot Option #8 When the item above -"Boot Mode Select" is set to UEFI, the following items will be display for configuration: Boot Option #1 - Boot Option #9 # **▶** Delete Boot Option Use this feature to select a boot device to delete from the boot priority list. ## **Delete Boot Option** Use this feature to remove an EFI boot option from the boot priority list. The options are **Select one to Delete**, UEFI: Built-in EFI Shell. # **▶**UEFI Application Boot Priorities This feature sets the system boot order of detected
devices. • Boot Option #1 # ► Hard Disk Drive BBS Priorities This feature sets the system boot order of detected devices. • Boot Option #1 ## **▶NETWORK Drive BBS Priorities** This feature sets the system boot order of detected devices. • Boot Option #1 # 6.8 Save & Exit Select the Save & Exit tab from the BIOS setup screen to configure the settings below. # Save Options #### **Discard Changes and Exit** Select this option to quit the BIOS setup without making any permanent changes to the system configuration and reboot the computer. Select Discard Changes and Exit from the Exit menu and press <Enter>. #### **Save Changes and Reset** When you have completed the system configuration changes, select this option to leave the BIOS setup utility and reboot the computer for the new system configuration parameters to take effect. Select Save Changes and Exit from the Exit menu and press <Enter>. #### **Save Changes** When you have completed the system configuration changes, select this option to save all changes made. This will not reset (reboot) the system. #### **Discard Changes** Select this option and press <Enter> to discard all the changes and return to the AMI BIOS setup utility. # **Default Options** # **Restore Optimized Defaults** To set this feature, select Restore Defaults from the Exit menu and press <Enter> to load manufacturer default settings which are intended for maximum system performance but not for maximum stability. #### Save As User Defaults To set this feature, select Save as User Defaults from the Exit menu and press <Enter>. This enables the user to save any changes to the BIOS setup for future use. #### **Restore User Defaults** To set this feature, select Restore User Defaults from the Exit menu and press <Enter>. Use this feature to retrieve user-defined settings that were saved previously. ## **Boot Override** #### **UEFI: Built-in EFI Shell** This feature allows the user to override the Boot priorities sequence in the Boot menu, and immediately boot the system with a device specified by the user instead of the one specified in the boot list. This is a one-time override. # Appendix A # **BIOS Error Codes** # A.1 BIOS Error POST (Beep) Codes During the POST (Power-On Self-Test) routines, which are performed each time the system is powered on, errors may occur. **Non-fatal errors** are those which, in most cases, allow the system to continue the boot-up process. The error messages normally appear on the screen. **Fatal errors** are those which will not allow the system to continue the boot-up procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs. These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list (on the following page) correspond to the number of beeps for the corresponding error. All errors listed, with the exception of Beep Code 8, are fatal errors. | BIOS Error Beep (POST) Codes | | | | |------------------------------|---------------------------------|--|--| | Beep Code | Error Message | Description | | | 1 short | Refresh | Circuits have been reset (Ready to power up) | | | 5 short, 1 long | Memory error | No memory detected in system | | | 5 long, 2 short | Display memory read/write error | Video adapter missing or with faulty memory | | | 1 long continuous | System OH | System overheat condition | | # A-2 Additional BIOS POST Codes The AMI BIOS supplies additional checkpoint codes, which are documented online at http://www.supermicro.com/support/manuals/ ("AMI BIOS POST Codes User's Guide"). When BIOS performs the Power On Self Test, it writes checkpoint codes to I/O port 0080h. If the computer cannot complete the boot process, a diagnostic card can be attached to the computer to read I/O port 0080h (Supermicro p/n AOC-LPC80-20). For information on AMI updates, please refer to http://www.ami.com/products/. | Appendix A: BIOS Error Codes | |------------------------------| # **Appendix B** # Standardized Warning Statements for AC Systems # **B.1 About Standardized Warning Statements** The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components. Read this appendix in its entirety before installing or configuring components in the Supermicro chassis. These warnings may also be found on our website at http://www.supermicro.com/about/policies/safety information.cfm. # **Warning Definition** **Warning!** This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. #### 警告の定義 この警告サインは危険を意味します。 人身事故につながる可能性がありますので、いずれの機器でも動作させる前に、 電気回路に含まれる危険性に注意して、標準的な事故防止策に精通して下さい。 #### 此警告符号代表危险。 您正处于可能受到严重伤害的工作环境中。在您使用设备开始工作之前,必须充分意识到触电的危险,并熟练掌握防止事故发生的标准工作程序。请根据每项警告结尾的声明号码找到此设备的安全性警告说明的翻译文本。 ## 此警告符號代表危險。 您正處於可能身體可能會受損傷的工作環境中。在您使用任何設備之前,請注意觸電的危險,並且要熟悉預防事故發生的標準工作程序。請依照每一注意事項後的號碼找到相關的翻譯說明 內容。 #### Warnung #### WICHTIGE SICHERHEITSHINWEISE Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu Verletzungen führen kann. Machen Sie sich vor der Arbeit mit Geräten mit den Gefahren elektrischer Schaltungen und den üblichen Verfahren zur Vorbeugung vor Unfällen vertraut. Suchen Sie mit der am Ende jeder Warnung angegebenen Anweisungsnummer nach der jeweiligen Übersetzung in den übersetzten Sicherheitshinweisen, die zusammen mit diesem Gerät ausgeliefert wurden. BEWAHREN SIE DIESE HINWEISE GUT AUF. #### INSTRUCCIONES IMPORTANTES DE SEGURIDAD Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo. GUARDE ESTAS INSTRUCCIONES. # IMPORTANTES INFORMATIONS DE SÉCURITÉ Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures ou des dommages corporels. Avant de travailler sur un équipement, soyez conscient des dangers liés aux circuits électriques et familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents. Pour prendre connaissance des traductions des avertissements figurant dans les consignes de sécurité traduites qui accompagnent cet appareil, référez-vous au numéro de l'instruction situé à la fin de chaque avertissement. CONSERVEZ CES INFORMATIONS. תקנון הצהרות אזהרה הצהרות הבאות הן אזהרות על פי תקני התעשייה, על מנת להזהיר את המשתמש מפני חבלה פיזית אפשרית. במידה ויש שאלות או היתקלות בבעיה כלשהי, יש ליצור קשר עם מחלקת תמיכה טכנית של סופרמיקרו. טכנאים מוסמכים בלבד רשאים להתקין או להגדיר את הרכיבים. יש לקרוא את הנספח במלואו לפני התקנת או הגדרת הרכיבים במארזי סופרמיקרו. ا كَ ف حالة وُكِي أَى تتسبب ف اصابة جسذ ةٌ هذا الزهز عٌ خطز !تحذ زٌ . قبل أَى تعول على أي هعذات،كي على علن بالوخاطز ال اُجوة عي الذوائز الكهزبائ ة وكي على درا ةٌ بالووارسات اللقائ ة لو عٌ وقع أي حيادث استخذم رقن الب إى الو صُبص ف هًا ةٌ كل تحذ زٌ للعثير تزجوتها 안전을 위한 주의사항 경고! 이 경고 기호는 위험이 있음을 알려 줍니다. 작업자의 신체에 부상을 야기 할 수 있는 상태에 있게 됩니다. 모든 장비에 대한 작업을 수행하기 전에 전기회로와 관련된 위험요소들을 확인하시고 사전에 사고를 방지할 수 있도록 표준 작업절차를 준수해 주시기바랍니다. 해당 번역문을 찾기 위해 각 경고의 마지막 부분에 제공된 경고문 번호를 참조하십시오 #### BELANGRIJKE VEILIGHEIDSINSTRUCTIES Dit waarschuwings symbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij een elektrische installatie betrokken risico's en dient u op de hoogte te zijn van de standaard procedures om ongelukken te voorkomen. Gebruik de nummers aan het eind van elke waarschuwing om deze te herleiden naar de desbetreffende locatie. **BEWAAR DEZE INSTRUCTIES** #### Installation Instructions **Warning!** Read the installation instructions before connecting the system to the power source. #### 設置手順書 システムを電源に接続する前に、設置手順書をお読み下さい。 #### 警告 将此系统连接电源前,请先阅读安装说明。 #### 警告 將系統與電源連接前,請先閱讀安裝說明。 #### Warnung Vor dem Anschließen des Systems an die Stromquelle die Installationsanweisungen lesen. #### ¡Advertencia! Lea las instrucciones de instalación antes de conectar el sistema a la red de alimentación. #### Attention Avant de brancher le système sur la source d'alimentation, consulter les directives d'installation. יש לקרוא את הוראות התקנה לפני חיבור המערכת למקור מתח. اقر إرشادات التركيب قبل توصيل النظام إلى مصدر للطاقة 시스템을 전원에 연결하기 전에 설치 안내를 읽어주십시오. ## Waarschuwing Raadpleeg de installatie-instructies voordat u het systeem op de voedingsbron aansluit. # Circuit Breaker **Warning!** This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 20 A. #### サーキット・ブレーカー この製品は、短絡(過電流)保護装置がある建物での設置を前提としています。 保護装置の定格が250 V、20 Aを超えないことを確認下さい。 #### 警告 此产品的短路(过载电流)保护由建筑物的供电系统提供,确保短路保护设备的额定电流不大于 250V,20A。 #### 警告 此產品的短路(過載電流)保護由建築物的供電系統提供,確保短路保護設備的額定電流不大於 250V,20A。 #### Warnung Dieses Produkt ist darauf angewiesen, dass im Gebäude ein Kurzschluss- bzw. Überstromschutz installiert ist. Stellen Sie sicher, dass der Nennwert der Schutzvorrichtung nicht mehr als: 250 V, 20 A beträgt. #### ¡Advertencia! Este equipo utiliza el sistema de protección contra cortocircuitos (o sobrecorrientes) del edificio. Asegúrese de que el dispositivo de protección no sea superior a: 250 V, 20 A. ## Attention Pour ce qui est de
la protection contre les courts-circuits (surtension), ce produit dépend de l'installation électrique du local. Vérifiez que le courant nominal du dispositif de protection n'est pas supérieur à :250 V, 20 A. מוצר זה מסתמך על הגנה המותקנת במבנים למניעת קצר חשמלי. יש לוודא כי מוצר זה מסתמך על הגנה החשמלי הוא לא יותר מ-250VDC, 20A هذا المنتج يعتمد على معداث الحمايت مه الدوائرالقصيرة التي تم تثبيتها في المبنى تقديم الحهاز الوقائي ليس أكثر من : 20A, 250V #### 경고! 이 제품은 전원의 단락(과전류)방지에 대해서 전적으로 건물의 관련 설비에 의존합니다. 보호장치의 정격이 반드시 250V(볼트), 20A(암페어)를 초과하지 않도록 해야 합니다. ## Waarschuwing Dit product is afhankelijk van de kortsluitbeveiliging (overspanning) van uw electrische installatie. Controleer of het beveiligde aparaat niet groter gedimensioneerd is dan 250V, 20A. # **Power Disconnection Warning** **Warning!** The system must be disconnected from all sources of power and the power cord removed from the power supply module(s) before accessing the chassis interior to install or remove system components. #### 電源切断の警告 システムコンポーネントの取り付けまたは取り外しのために、シャーシー内部にアクセスするには、 システムの電源はすべてのソースから切断され、電源コードは電源モジュールから取り外す必要が あります。 #### 警告 在你打开机箱并安装或移除内部器件前,必须将系统完全断电,并移除电源线。 #### 警告 在您打開機殼安裝或移除內部元件前,必須將系統完全斷電,並移除電源線。 #### Warnung Das System muss von allen Quellen der Energie und vom Netzanschlusskabel getrennt sein, das von den Spg.Versorgungsteilmodulen entfernt wird, bevor es auf den Chassisinnenraum zurückgreift, um Systemsbestandteile anzubringen oder zu entfernen. ## ¡Advertencia! El sistema debe ser disconnected de todas las fuentes de energía y del cable eléctrico quitado de los módulos de fuente de alimentación antes de tener acceso el interior del chasis para instalar o para quitar componentes de sistema. #### Attention Le système doit être débranché de toutes les sources de puissance ainsi que de son cordon d'alimentation secteur avant d'accéder à l'intérieur du chassis pour installer ou enlever des composants de système. אזהרה מפני ניתוק חשמלי אזהרה! יש לנתק את המערכת מכל מקורות החשמל ויש להסיר את כבל החשמלי מהספק. לפני גישה לחלק הפנימי של המארז לצורך התקנת או הסרת רכיבים. يجب فصم اننظاو من جميع مصادر انطاقت وإزانت سهك انكهرباء من وحدة امداد انطاقت قبم اننطاق انداخهيت نههيكم نتثبيج أو إزانت مكنناث الجهاز #### 경고! 시스템에 부품들을 장착하거나 제거하기 위해서는 섀시 내부에 접근하기 전에 반드시 전원 공급장치로부터 연결되어있는 모든 전원과 전기코드를 분리해주어야 합니다. #### Waarschuwing Voordat u toegang neemt tot het binnenwerk van de behuizing voor het installeren of verwijderen van systeem onderdelen, dient u alle spanningsbronnen en alle stroomkabels aangesloten op de voeding(en) van de behuizing te verwijderen # **Equipment Installation** **Warning!** Only trained and qualified personnel should be allowed to install, replace, or service this equipment. #### 機器の設置 トレーニングを受け認定された人だけがこの装置の設置、交換、またはサービスを許可されています。 #### 警告 只有经过培训且具有资格的人员才能进行此设备的安装、更换和维修。 #### 警告 只有經過受訓且具資格人員才可安裝、更換與維修此設備。 ## Warnung Das Installieren, Ersetzen oder Bedienen dieser Ausrüstung sollte nur geschultem, qualifiziertem Personal gestattet werden. #### ¡Advertencia! Solamente el personal calificado debe instalar, reemplazar o utilizar este equipo. #### Attention Il est vivement recommandé de confier l'installation, le remplacement et la maintenance de ces équipements à des personnels qualifiés et expérimentés. אזהרה! צוות מוסמך בלבד רשאי להתקין, להחליף את הציוד או לתת שירות עבור הציוד. والمدربيه لتزكيب واستبدال أو خدمة هذا الجهاس يجب أن يسمح فقط للمنظفيه المؤهليه 경고! 훈련을 받고 공인된 기술자만이 이 장비의 설치, 교체 또는 서비스를 수행할 수 있습니다. #### Waarschuwing Deze apparatuur mag alleen worden geïnstalleerd, vervangen of hersteld door geschoold en gekwalificeerd personeel. ## **Restricted Area** **Warning!** This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. (This warning does not apply to workstations). #### アクセス制限区域 このユニットは、アクセス制限区域に設置されることを想定しています。 アクセス制限区域は、特別なツール、鍵と錠前、その他のセキュリティの手段を用いてのみ出入りが可能です。 # 警告 此部件应安装在限制进出的场所,限制进出的场所指只能通过使用特殊工具、锁和钥匙或其它安全手段进出的场所。 #### 警告 此裝置僅限安裝於進出管制區域,進出管制區域係指僅能以特殊工具、鎖頭及鑰匙或其他安全 方式才能進入的區域。 #### Warnung Diese Einheit ist zur Installation in Bereichen mit beschränktem Zutritt vorgesehen. Der Zutritt zu derartigen Bereichen ist nur mit einem Spezialwerkzeug, Schloss und Schlüssel oder einer sonstigen Sicherheitsvorkehrung möglich. #### ¡Advertencia! Esta unidad ha sido diseñada para instalación en áreas de acceso restringido. Sólo puede obtenerse acceso a una de estas áreas mediante la utilización de una herramienta especial, cerradura con llave u otro medio de seguridad. #### Attention Cet appareil doit être installée dans des zones d'accès réservés. L'accès à une zone d'accès réservé n'est possible qu'en utilisant un outil spécial, un mécanisme de verrouillage et une clé, ou tout autre moyen de sécurité. אזור עם גישה מוגבלת !אזהרה יש להתקין את היחידה באזורים שיש בהם הגבלת גישה. הגישה ניתנת בעזרת 'כלי אבטחה בלבד)מפתח, מנעול וכד.) تخصيص هذه اندخذة نترك بها ف مناطق محظورة تم . ، مكن اندصل إن منطقت محظورة فقط من خلال استخذاو أداة خاصت أو أوس هُت أخري نلالأمما قفم ومفتاح ## 경고! 이 장치는 접근이 제한된 구역에 설치하도록 되어있습니다. 특수도구, 잠금 장치 및 키, 또는 기타 보안 수단을 통해서만 접근 제한 구역에 들어갈 수 있습니다. #### Waarschuwing Dit apparaat is bedoeld voor installatie in gebieden met een beperkte toegang. Toegang tot dergelijke gebieden kunnen alleen verkregen worden door gebruik te maken van speciaal gereedschap, slot en sleutel of andere veiligheidsmaatregelen. # **Battery Handling** **Warning!** There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions ## 電池の取り扱い 電池交換が正しく行われなかった場合、破裂の危険性があります。交換する電池はメーカーが推奨する型、または同等のものを使用下さい。使用済電池は製造元の指示に従って処分して下さい。 #### 警告 电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更换原有电 池。请按制造商的说明处理废旧电池。 #### 警告 電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有電池。請按 照製造商的說明指示處理廢棄舊電池。 #### Warnung Bei Einsetzen einer falschen Batterie besteht Explosionsgefahr. Ersetzen Sie die Batterie nur durch den gleichen oder vom Hersteller empfohlenen Batterietyp. Entsorgen Sie die benutzten Batterien nach den Anweisungen des Herstellers. #### Attention Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant. #### ¡Advertencia! Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante. אזהרה! קיימת סכנת פיצוץ של הסוללה במידה והוחלפה בדרך לא תקינה. יש להחליף את הסוללה בסוג התואם מחברת יצרן מומלצת. סילוק הסוללות המשומשות יש לבצע לפי הוראות היצרן. هناك خطر من انفجار في حالة اسحبذال البطارية بطريقة غير صحيحة فعليل اسحبذال البطارية فعليا البطارية فعليا فقط بنفس النبع أو ما يعادلها مما أوصت به الشرمة المصنعة وخلص من البطاريات المسحعملة وفقا لحعليمات الشرمة الصانعة #### 경고! 배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오. ## Waarschuwing Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden. # **Redundant Power Supplies** **Warning!** This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. #### 冗長電源装置 このユニットは複数の電源装置が接続されている場合があります。 ユニットの電源を切るためには、すべての接続を取り外さなければなりません。 #### 警告 此部件连接的电源可能不止一个,必须将所有电源断开才能停止给该部件供电。 #### 警告 此裝置連接的電源可能不只一個,必須切斷所有電源才能停止對該裝置的供電。 #### Warnung Dieses Gerät kann mehr als eine Stromzufuhr haben. Um sicherzustellen, dass der Einheit kein trom zugeführt wird, müssen alle Verbindungen entfernt werden. #### ¡Advertencia! Puede que esta unidad tenga más de una conexión para fuentes de alimentación. Para cortar por completo el suministro de energía, deben desconectarse todas las conexiones. #### Attention Cette unité peut avoir plus d'une connexion d'alimentation. Pour supprimer toute tension et tout courant électrique de l'unité, toutes les connexions d'alimentation doivent être débranchées. אם קיים יותר מספק אחד אזהרה! ליחדה יש יותר מחיבור אחד של ספק. יש להסיר את כל החיבורים על מנת לרוקן את היחידה. > قد يكون لهذا الجهاز عدة اتصالات بوحدات امداد الطاقة . بجب إزالة كافة الاتصالات لعسل الوحدة عن الكهرباء #### 경고! 이 장치에는 한 개 이상의 전원 공급 단자가 연결되어 있을 수 있습니다. 이 장치에 전원을 차단하기 위해서는 모든 연결 단자를 제거해야만 합니다. ## Waarschuwing Deze eenheid kan meer dan één stroomtoevoeraansluiting bevatten. Alle aansluitingen dienen verwijderd te worden om het apparaat stroomloos te maken. # **Backplane Voltage** **Warning!** Hazardous voltage or energy is present on the backplane when the system is operating. Use caution when servicing. #### バックプレーンの電圧 システムの稼働中は危険な電圧または電力が、バックプレーン上にかかっています。 修理する際には注意ください。 #### 警告 当系统正在进行时,背板上有很危险的电压或能量,进行维修时务必小心。 ## 警告 當系統正在進行時,背板上有危險的電壓或能量,進行維修時務必小心。 ## Warnung Wenn das System in Betrieb ist, treten auf der Rückwandplatine gefährliche Spannungen oder Energien auf. Vorsicht bei der Wartung. #### ¡Advertencia! Cuando el sistema está en funcionamiento, el voltaje del plano trasero es peligroso. Tenga cuidado cuando lo revise. #### Attention Lorsque le système est en fonctionnement, des tensions électriques circulent sur le fond de panier. Prendre des précautions lors de la maintenance. מתח בפנל האחורי אזהרה! קיימת סכנת מתח בפנל האחורי בזמן תפעול המערכת. יש להיזהר במהלך העבודה. هناك خطز مه التيار الكهزبائي أوالطاقة المبجدة على اللبحة عندما يكنن النظام يعمل كه حذرا عند خدمة هذا الجهاس #### 경고! 시스템이 동작 중일 때 후면판 (Backplane)에는 위험한 전압이나 에너지가 발생 합니다. 서비스 작업 시 주의하십시오. ## Waarschuwing Een gevaarlijke spanning of energie is aanwezig op de backplane wanneer het systeem in gebruik is. Voorzichtigheid is
geboden tijdens het onderhoud. # **Comply with Local and National Electrical Codes** **Warning!** Installation of the equipment must comply with local and national electrical codes. ## 地方および国の電気規格に準拠 機器の取り付けはその地方および国の電気規格に準拠する必要があります。 #### 警告 设备安装必须符合本地与本国电气法规。 #### 警告 設備安裝必須符合本地與本國電氣法規。 ## Warnung Die Installation der Geräte muss den Sicherheitsstandards entsprechen. ## ¡Advertencia! La instalacion del equipo debe cumplir con las normas de electricidad locales y nacionales. #### Attention L'équipement doit être installé conformément aux normes électriques nationales et locales. תיאום חוקי החשמל הארצי אזהרה! התקנת הציוד חייבת להיות תואמת לחוקי החשמל המקומיים והארציים. تركيب المعدات الكهربائية يجب أن يمتثل للقباويه المحلية والبطبية المتعلقة بالكهرباء 경고! 현 지역 및 국가의 전기 규정에 따라 장비를 설치해야 합니다. #### Waarschuwing Bij installatie van de apparatuur moet worden voldaan aan de lokale en nationale elektriciteitsvoorschriften. # **Product Disposal** **Warning!** Ultimate disposal of this product should be handled according to all national laws and regulations. ## 製品の廃棄 この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。 #### 警告 本产品的废弃处理应根据所有国家的法律和规章进行。 #### 警告 本產品的廢棄處理應根據所有國家的法律和規章進行。 ## Warnung Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen. ## ¡Advertencia! Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales. #### Attention La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent. סילוק המוצר !אזהרה סילוק סופי של מוצר זה חייב להיות בהתאם להנחיות וחוקי המדינה. التخلص النهائي من هذا المنتج ينبغي التعامل معه وفقا لجميع القبانين واللبائح البطنية عند 경고! 이 제품은 해당 국가의 관련 법규 및 규정에 따라 폐기되어야 합니다. #### Waarschuwing De uiteindelijke verwijdering van dit product dient te geschieden in overeenstemming met alle nationale wetten en reglementen. # **Hot Swap Fan Warning** **Warning!** Hazardous moving parts. Keep away from moving fan blades. The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly's housing. ファン・ホットスワップの警告 警告!回転部品に注意。運転中は回転部(羽根)に触れないでください。シャーシから冷却ファン装置を取り外した際、ファンがまだ回転している可能性があります。ファンの開口部に、指、ドライバー、およびその他のものを近づけないで下さい。 ## 警告! 警告!危险的可移动性零件。请务必与转动的风扇叶片保持距离。 当您从机架移除风扇装置、风扇可能仍在转动。小心不要将手指、螺丝起子和其他物品太靠近风扇 #### 警告 危險的可移動性零件。請務必與轉動的風扇葉片保持距離。 當您從機架移除風扇裝置,風扇可能仍在轉動。小心不要將手指、螺絲起子和其他物品太靠近風扇。 #### Warnung Gefährlich Bewegende Teile. Von den bewegenden Lüfterblätter fern halten. Die Lüfter drehen sich u. U. noch, wenn die Lüfterbaugruppe aus dem Chassis genommen wird. Halten Sie Finger, Schraubendreher und andere Gegenstände von den Öffnungen des Lüftergehäuses entfernt. #### ¡Advertencia! Riesgo de piezas móviles. Mantener alejado de las aspas del ventilador. Los ventiladores podran dar vuelta cuando usted quite ell montaje del ventilador del chasis. Mandtenga los dedos, los destornilladores y todos los objetos lejos de las aberturas del ventilador #### Attention Pieces mobiles dangereuses. Se tenir a l'ecart des lames du ventilateur II est possible que les ventilateurs soient toujours en rotation lorsque vous retirerez le bloc ventilateur du châssis. Prenez garde à ce que doigts, tournevis et autres objets soient éloignés du logement du bloc ventilateur. !אזהרה חלקים נעים מסוכנים. התרחק מלהבי המאוורר בפעולהכאשר מסירים את חלקי המאוורר מהמארז, יתכן והמאווררים עדיין עובדים. יש להרחיק למרחק בטוח את האצבעות וכלי עבודה שונים מהפתחים בתוך המאוורר تحذير! أجزاء متحركة خطرة. ابتعد عن شفرات المروحة المتحركة.من الممكن أن المراوح لا تزال تدورعند إزالة كتلة المروحة من الهيكل يجب إبقاء الأصابع .ومفكات البراغي وغيرها من الأشياء بعيدا عن الفتحات في كتلة المروحة #### 경고! 움직이는 위험한 부품. 회전하는 송풍 날개에 접근하지 마세요. 섀시로부터 팬 조립품을 제거할 때 팬은 여전히 회전하고 있을 수 있습니다. 팬 조림품 외관의 열려있는 부분들로부터 손가락 및 스크류드라이버, 다른 물체들이 가까이 하지 않도록 배치해 주십시오. #### Waarschuwing Gevaarlijk bewegende onderdelen. Houd voldoende afstand tot de bewegende ventilatorbladen. Het is mogelijk dat de ventilator nog draait tijdens het verwijderen van het ventilatorsamenstel uit het chassis. Houd uw vingers, schroevendraaiers en eventuele andere voorwerpen uit de buurt van de openingen in de ventilatorbehuizing. # **Power Cable and AC Adapter** **Warning!** When installing the product, use the provided or designated connection cables, power cables and AC adaptors. Using any other cables and adaptors could cause a malfunction or a fire. Electrical Appliance and Material Safety Law prohibits the use of UL or CSA -certified cables (that have UL/CSA shown on the code) for any other electrical devices than products designated by Supermicro only. ## 電源コードとACアダプター 製品を設置する場合、提供または指定および購入された接続ケーブル、電源コードとACアダプターを 該当する地域の条例や安全基準に適合するコードサイズやプラグと共に使用下さい。 他のケーブルやアダプタを使用すると故障や火災の原因になることがあります。 電気用品安全法は、ULまたはCSA認定のケーブル(UL/CSEマークがコードに表記)を Supermicro が指定する製品以外に使用することを禁止しています。 #### 警告 安装此产品时,请使用本身提供的或指定的或采购的连接线,电源线和电源适配器,包含遵照当地法规和安全要求的合规的电源线尺寸和插头.使用其它线材或适配器可能会引起故障或火灾。除了Supermicro所指定的产品,电气用品和材料安全法律规定禁止使用未经UL或CSA认证的线材。(线材上会显示UL/CSA符号)。 #### 警告 安裝此產品時,請使用本身提供的或指定的或採購的連接線,電源線和電源適配器‧包含遵照當地法規和安全要求的合規的電源線尺寸和插頭.使用其它線材或適配器可能會引起故障或火災。除了Supermicro所指定的產品,電氣用品和材料安全法律規定禁止使用未經UL或CSA認證的線材。 (線材上會顯示UL/CSA符號)。 #### Warnung Nutzen Sie beim Installieren des Produkts ausschließlich die von uns zur Verfügung gestellten Verbindungskabeln, Stromkabeln und/oder Adapater, die Ihre örtlichen Sicherheitsstandards einhalten. Der Gebrauch von anderen Kabeln und Adapter können Fehlfunktionen oder Feuer verursachen. Die Richtlinien untersagen das Nutzen von UL oder CAS zertifizierten Kabeln (mit UL/CSA gekennzeichnet), an Geräten oder Produkten die nicht mit Supermicro gekennzeichnet sind. #### ¡Advertencia! Cuando instale el producto, utilice la conexión provista o designada o procure cables, Cables de alimentación y adaptadores de CA que cumplan con los códigos locales y los requisitos de seguridad, incluyendo el tamaño adecuado del cable y el enchufe. El uso de otros cables y adaptadores podría causar un mal funcionamiento o un incendio. La Ley de Seguridad de Aparatos Eléctricos y de Materiales prohíbe El uso de cables certificados por UL o CSA (que tienen el certificado UL / CSA en el código) para cualquier otros dispositivos eléctricos que los productos designados únicamente por Supermicro. #### Attention Lors de l'installation du produit, utilisez les cables de connection fournis ou désigné ou achetez des cables, cables de puissance et adaptateurs respectant les normes locales et les conditions de securite y compris les tailles de cables et les prises electriques appropries. L'utilisation d'autres cables et adaptateurs peut provoquer un dysfonctionnement ou un incendie. Appareils électroménagers et la Loi sur la Sécurité Matériel interdit l'utilisation de câbles certifies- UL ou CSA (qui ont UL ou CSA indiqué sur le code) pour tous les autres appareils électriques sauf les produits désignés par Supermicro seulement. מתאמי כבלים חשמליים ומתאמי אזהרה! אשר נרכשו או הותאמו לצורך ההתקנה, ואשר הותאמו לדרישות AC כאשר מתקינים את המוצר, יש להשתמש בכבלים, ספקים ומתאמים הבטיחות המקומיות, כולל מידה נכונה של הכבל והתקע. שימוש בכל כבל או מתאם מסוג אחר, עלול לגרום לתקלה או קצר חשמלי. בהתאם כאשר מופיע עליהם קוד) CSA-או ב UL -לחוקי השימוש במכשירי החשמל וחוקי הבטיחות, קיים איסור להשתמש בכבלים המוסמכים ב בלבד Supermicro עבור כל מוצר חשמלי אחר, אלא רק במוצר אשר הותאם ע"י UL/CSA) של عند تركيب المنتج، قم باستخدام التوصيلات المتوفرة أو المحددة أو قم بشراء الكابلات الكهربائية ومحولات التيار المتردد مع الالتزام بقوانين ومتطلبات السلامة المحلية بما في ذلك حجم الموصل والقابس السليم. استخدام أي كابلات ومحولات أخرى قد يتسبب في عطل أو حريق. يحظر قانون السلامة للأجهزة الكهربائية والمعدات استخدام الكابلات المعتمدة Supermicro. مع أي معدات أخرى غير المنتجات المعنية والمحددة من قبل (UL/CSA) والتي تحمل علامة CSA أو UL من قبل 전원 케이블 및 AC 어댑터 경고! 제품을 설치할 때 현지 코드 및 적절한 굵기의 코드와 플러그를 포함한 안전 요구 사항을 준수하여 제공되거나 지정된 연결 혹은 구매 케이블, 전원 케이블 및 AC 어댑터를 사용하십시오. 다른 케이블이나 어댑터를 사용하면 오작동이나 화재가 발생할 수 있습니다. 전기 용품 안전법은 UL 또는 CSA 인증 케이블 (코드에 UL / CSA가 표시된 케이블)을 Supermicro 가 지정한 제품 이외의 전기 장치에 사용하는 것을 금지합니다. ## Stroomkabel en AC-Adapter Waarschuwing! Bij het aansluiten van het Product uitsluitend gebruik maken van de geleverde Kabels of een andere geschikte aan te schaffen Aansluitmethode, deze moet altijd voldoen aan de lokale voorschriften en veiligheidsnormen, inclusief de juiste kabeldikte en stekker. Het gebruik van niet geschikte Kabels en/of Adapters kan een storing of brand veroorzaken. Wetgeving voor Elektrische apparatuur en Materiaalveiligheid verbied het gebruik van UL of CSA -gecertificeerde Kabels (met UL/CSA in de code) voor elke andere toepassing dan de door Supermicro hiervoor beoogde Producten. # **Appendix C** # **System Specifications** #### **Processors** Dual Intel® Xeon® Scalable processors in a Socket P type socket (Intel Xeon Gold 6144, 6146 and 6154 for -LL1, -LL2, and -LL3, respectively) Note: Please refer to the motherboard specifications pages on our website for updates to supported processors. #### Chipset Intel C621 chipset #### **BIOS** 32Mb AMI® Flash ROM #### Memory Sixteen DIMM slots to support up to 2TB of ECC, DDR4-2666/2400 Registered DIMM (RDIMM) memory **Note:** Twelve 16GB DIMMs have been pre-installed in the system. See the memory section in Chapter 5 for details and our website for updates to supported memory. #### **SATA Controller** Intel C621 controller #### **Drive Bays** Ten 2.5" hot-swap drive bays #### **PCI Expansion Slots (supported)** Two PCI-E 3.0 x16 slots (with included riser card) One PCI-E 3.0 x8 (with included riser card) #### **Motherboard** X11DPU-XLL; ATX form factor (17 x 16.8 in. / 432 x 427 mm.) #### Chassis SC119UTS-R751P; 1U rackmount, 17.2 x 1.7 x 27.8 in. (437 x 43 x 706 mm) (W x H x D) #### **System Cooling** Eight 4-cm counter-rotating PWM fans #### **Power Supply** Model: PWS-751P-1R AC Input Voltages: 100-240 VAC Rated Input
Current: 9.5-4.5A Rated Input Frequency: 50-60 Hz Rated Output Power: 750W Rated Output Voltages: +12V, +12Vsb (2A) #### **Operating Environment** Operating Temperature: 10° to 35° C (50° to 95° F) Non-operating Temperature: -40° to 70° C (-40° to 158° F) Operating Relative Humidity: 8% to 90% (non-condensing) Non-operating Relative Humidity: 5% to 95% (non-condensing) #### **Regulatory Compliance** Electromagnetic Emissions: FCC Class A, EN 55032 Class A, EN 61000-3-2/3-3, CISPR 32 Class A Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11) Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE Marking (Europe) Other: VCCI-CISPR 32 and AS/NZS CISPR 32 Environmental: Directive 2011/65/EU and Directive 2012/19/EU #### **Perchlorate Warning** California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate" # **Appendix D** # **UEFI BIOS Recovery** **Warning:** Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall Supermicro be liable for direct, indirect, special, incidental, or consequential damages arising from a BIOS update. If you do update the BIOS, do not shut down or reset the system while the BIOS is updating to avoid possible boot failure. ## **D.1 Overview** The Unified Extensible Firmware Interface (UEFI) provides a software-based interface between the operating system and the platform firmware in the pre-boot environment. The UEFI specification supports an architecture-independent mechanism that will allow the UEFI OS loader stored in an add-on card to boot the system. The UEFI offers clean, hands-off management to a computer during system boot. # D.2 Recovering the UEFI BIOS Image A UEFI BIOS flash chip consists of a recovery BIOS block and a main BIOS block (a main BIOS image). The recovery block contains critical BIOS codes, including memory detection and recovery codes for the user to flash a healthy BIOS image if the original main BIOS image is corrupted. When the system power is turned on, the recovery block codes execute first. Once this process is complete, the main BIOS code will continue with system initialization and the remaining POST (Power-On Self-Test) routines. **Note 1:** Follow the BIOS recovery instructions below for BIOS recovery when the main BIOS block crashes. **Note 2:** When the BIOS recovery block crashes, you will need to follow the procedures to make a Returned Merchandise Authorization (RMA) request. (For a RMA request, please see section 3.5 for more information). Also, you may use the Supermicro Update Manager (SUM) Out-of-Band (OOB) (https://www.supermicro.com.tw/products/nfo/SMS_SUM.cfm) to reflash the BIOS. # D.3 Recovering the Main BIOS Block with a USB Device This feature allows the user to recover the main BIOS image using a USB-attached device without additional utilities used. A USB flash device such as a USB Flash Drive, or a USB CD/DVD ROM/RW device can be used for this purpose. However, a USB Hard Disk drive cannot be used for BIOS recovery at this time. The file system supported by the recovery block is FAT (including FAT12, FAT16, and FAT32) which is installed on a bootable or non-bootable USB-attached device. However, the BIOS might need several minutes to locate the SUPER.ROM file if the media size becomes too large due to the huge volumes of folders and files stored in the device. To perform UEFI BIOS recovery using a USB-attached device, follow the instructions below. - 1. Using a different machine, copy the "Super.ROM" binary image file into the Root "\" directory of a USB device or a writable CD/DVD. - **Note 1:** If you cannot locate the "Super.ROM" file in your drive disk, visit our website at www.supermicro.com to download the BIOS package. Extract the BIOS binary image into a USB flash device and rename it "Super.ROM" for the BIOS recovery use. - **Note 2:** Before recovering the main BIOS image, confirm that the "Super.ROM" binary image file you download is the same version or a close version meant for your motherboard. - 2. Insert the USB device that contains the new BIOS image ("Super.ROM") into your USB drive and reset the system when the following screen appears. 3. After locating the healthy BIOS binary image, the system will enter the BIOS Recovery menu as shown below. **Note**: At this point, you may decide if you want to start the BIOS recovery. If you decide to proceed with BIOS recovery, follow the procedures below. 4. When the screen as shown above displays, use the arrow keys to select the item "Proceed with flash update" and press the <Enter> key. You will see the BIOS recovery progress as shown in the screen below. Note: <u>Do not interrupt the BIOS flashing process until it has completed</u>. 5. After the BIOS recovery process is complete, press any key to reboot the system. - 6. Using a different system, extract the BIOS package into a USB flash drive. - 7. Press continuously during system boot to enter the BIOS Setup utility. From the top of the tool bar, select Boot to enter the submenu. From the submenu list, select Boot Option #1 as shown below. Then, set Boot Option #1 to [UEFI AP:UEFI: Built-in EFI Shell]. Press <F4> to save the settings and exit the BIOS Setup utility. 8. When the UEFI Shell prompt appears, type fs# to change the device directory path. Go to the directory that contains the BIOS package you extracted earlier from Step 6. Enter flash.nsh BIOSname.### at the prompt to start the BIOS update process. ``` UEF1 Interactive Shell v2.1 EDK II UEF1 v2.50 (American Megatrends, 0x0005000c) Hopping tolls FSD: 1886(S) +1800*06::Bkts FE:Host(0x00)/FE:(0x14,0x0)/VBS(0x11,0x0)/HB(1,MSR,0x37901D72,0x800,0x1 DA5552) EDK: Alias(S): FE:Rout(0x00)/FE:(0x14,0x0)/VBS(0x11,0x0)/HB(1,MSR,0x37901D72,0x800,0x1 DA5552) FP:ESS: Disconding to skip startun.nsh or any other key to continue. Shelly FSD: Total VBS(DS) FSD: VERTIORS VERTIFICATION TO STARTUN.NSh or any other key to continue. FSD: VERTIORS VERTIFICATION TO STARTUN.NSh or any Other key to continue. FSD: VERTIORS VERTIFICATION TO STARTUN.NSh or any Other key to continue. FSD: VERTIORS VERTIFICATION TO STARTUN.NSh or any Other key to continue. FSD: VERTIORS VERTIFICATION TO STARTUN.NSh or any Other key to continue. ``` Note: Do not interrupt this process until the BIOS flashing is complete. 9. The screen above indicates that the BIOS update process is complete. When you see the screen above, unplug the AC power cable from the power supply, clear CMOS, and plug the AC power cable in the power supply again to power on the system. ``` Verifying NOB Blockdone - Undate success for IE. - - Successful Update Recovery Loader to OPRK!! - Successful Update Recovery Loader to OPRK!! - Successful Update Resel-1 - Successful Update Resel-1 - Successful Update INFS. IVNI and IVNE!! - Successful Update INFS. IVNI and IVNE!! - RE Critice Invoke update success !! MMNINI Sustem must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off to have the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off take the changes take effect! MMNINI System must power-off t ``` - 10. Press continuously to enter the BIOS Setup utility. - 11. Press <F3> to load the default settings. - 12. After loading the default settings, press <F4> to save the settings and exit the BIOS Setup utility.